Spaces:
Sleeping
Sleeping
model_name = "ChatGLM3" | |
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`" | |
from toolbox import get_conf, ProxyNetworkActivate | |
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# ππ» Local Model | |
# ------------------------------------------------------------------------------------------------------------------------ | |
class GetGLM3Handle(LocalLLMHandle): | |
def load_model_info(self): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
self.model_name = model_name | |
self.cmd_to_install = cmd_to_install | |
def load_model_and_tokenizer(self): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
from transformers import AutoModel, AutoTokenizer | |
import os, glob | |
import os | |
import platform | |
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE') | |
if LOCAL_MODEL_QUANT == "INT4": # INT4 | |
_model_name_ = "THUDM/chatglm3-6b-int4" | |
elif LOCAL_MODEL_QUANT == "INT8": # INT8 | |
_model_name_ = "THUDM/chatglm3-6b-int8" | |
else: | |
_model_name_ = "THUDM/chatglm3-6b" # FP16 | |
with ProxyNetworkActivate('Download_LLM'): | |
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True) | |
if device=='cpu': | |
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cpu').float() | |
else: | |
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cuda') | |
chatglm_model = chatglm_model.eval() | |
self._model = chatglm_model | |
self._tokenizer = chatglm_tokenizer | |
return self._model, self._tokenizer | |
def llm_stream_generator(self, **kwargs): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
def adaptor(kwargs): | |
query = kwargs['query'] | |
max_length = kwargs['max_length'] | |
top_p = kwargs['top_p'] | |
temperature = kwargs['temperature'] | |
history = kwargs['history'] | |
return query, max_length, top_p, temperature, history | |
query, max_length, top_p, temperature, history = adaptor(kwargs) | |
for response, history in self._model.stream_chat(self._tokenizer, | |
query, | |
history, | |
max_length=max_length, | |
top_p=top_p, | |
temperature=temperature, | |
): | |
yield response | |
def try_to_import_special_deps(self, **kwargs): | |
# import something that will raise error if the user does not install requirement_*.txt | |
# πββοΈπββοΈπββοΈ δΈ»θΏη¨ζ§θ‘ | |
import importlib | |
# importlib.import_module('modelscope') | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# ππ» GPT-Academic Interface | |
# ------------------------------------------------------------------------------------------------------------------------ | |
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM3Handle, model_name, history_format='chatglm3') |