Spaces:
Paused
Paused
File size: 7,424 Bytes
90fd8f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from diff_gaussian_rasterization import (
GaussianRasterizationSettings,
GaussianRasterizer,
)
from core.options import Options
import kiui
class GaussianRenderer:
def __init__(self, opt: Options):
self.opt = opt
self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda")
# intrinsics
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
self.proj_matrix[2, 3] = 1
def render(self, gaussians, cam_view, cam_view_proj, cam_pos, bg_color=None, scale_modifier=1):
# gaussians: [B, N, 14]
# cam_view, cam_view_proj: [B, V, 4, 4]
# cam_pos: [B, V, 3]
device = gaussians.device
B, V = cam_view.shape[:2]
# loop of loop...
images = []
alphas = []
for b in range(B):
# pos, opacity, scale, rotation, shs
means3D = gaussians[b, :, 0:3].contiguous().float()
opacity = gaussians[b, :, 3:4].contiguous().float()
scales = gaussians[b, :, 4:7].contiguous().float()
rotations = gaussians[b, :, 7:11].contiguous().float()
rgbs = gaussians[b, :, 11:].contiguous().float() # [N, 3]
for v in range(V):
# render novel views
view_matrix = cam_view[b, v].float()
view_proj_matrix = cam_view_proj[b, v].float()
campos = cam_pos[b, v].float()
raster_settings = GaussianRasterizationSettings(
image_height=self.opt.output_size,
image_width=self.opt.output_size,
tanfovx=self.tan_half_fov,
tanfovy=self.tan_half_fov,
bg=self.bg_color if bg_color is None else bg_color,
scale_modifier=scale_modifier,
viewmatrix=view_matrix,
projmatrix=view_proj_matrix,
sh_degree=0,
campos=campos,
prefiltered=False,
debug=False,
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer(
means3D=means3D,
means2D=torch.zeros_like(means3D, dtype=torch.float32, device=device),
shs=None,
colors_precomp=rgbs,
opacities=opacity,
scales=scales,
rotations=rotations,
cov3D_precomp=None,
)
rendered_image = rendered_image.clamp(0, 1)
images.append(rendered_image)
alphas.append(rendered_alpha)
images = torch.stack(images, dim=0).view(B, V, 3, self.opt.output_size, self.opt.output_size)
alphas = torch.stack(alphas, dim=0).view(B, V, 1, self.opt.output_size, self.opt.output_size)
return {
"image": images, # [B, V, 3, H, W]
"alpha": alphas, # [B, V, 1, H, W]
}
def save_ply(self, gaussians, path, compatible=True):
# gaussians: [B, N, 14]
# compatible: save pre-activated gaussians as in the original paper
assert gaussians.shape[0] == 1, 'only support batch size 1'
from plyfile import PlyData, PlyElement
means3D = gaussians[0, :, 0:3].contiguous().float()
opacity = gaussians[0, :, 3:4].contiguous().float()
scales = gaussians[0, :, 4:7].contiguous().float()
rotations = gaussians[0, :, 7:11].contiguous().float()
shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() # [N, 1, 3]
# prune by opacity
mask = opacity.squeeze(-1) >= 0.005
means3D = means3D[mask]
opacity = opacity[mask]
scales = scales[mask]
rotations = rotations[mask]
shs = shs[mask]
# invert activation to make it compatible with the original ply format
if compatible:
opacity = kiui.op.inverse_sigmoid(opacity)
scales = torch.log(scales + 1e-8)
shs = (shs - 0.5) / 0.28209479177387814
xyzs = means3D.detach().cpu().numpy()
f_dc = shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
opacities = opacity.detach().cpu().numpy()
scales = scales.detach().cpu().numpy()
rotations = rotations.detach().cpu().numpy()
l = ['x', 'y', 'z']
# All channels except the 3 DC
for i in range(f_dc.shape[1]):
l.append('f_dc_{}'.format(i))
l.append('opacity')
for i in range(scales.shape[1]):
l.append('scale_{}'.format(i))
for i in range(rotations.shape[1]):
l.append('rot_{}'.format(i))
dtype_full = [(attribute, 'f4') for attribute in l]
elements = np.empty(xyzs.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def load_ply(self, path, compatible=True):
from plyfile import PlyData, PlyElement
plydata = PlyData.read(path)
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
np.asarray(plydata.elements[0]["y"]),
np.asarray(plydata.elements[0]["z"])), axis=1)
print("Number of points at loading : ", xyz.shape[0])
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
shs = np.zeros((xyz.shape[0], 3))
shs[:, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
shs[:, 1] = np.asarray(plydata.elements[0]["f_dc_1"])
shs[:, 2] = np.asarray(plydata.elements[0]["f_dc_2"])
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
scales = np.zeros((xyz.shape[0], len(scale_names)))
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot_")]
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
gaussians = np.concatenate([xyz, opacities, scales, rots, shs], axis=1)
gaussians = torch.from_numpy(gaussians).float() # cpu
if compatible:
gaussians[..., 3:4] = torch.sigmoid(gaussians[..., 3:4])
gaussians[..., 4:7] = torch.exp(gaussians[..., 4:7])
gaussians[..., 11:] = 0.28209479177387814 * gaussians[..., 11:] + 0.5
return gaussians |