Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import time | |
import pandas as pd | |
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf | |
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings | |
from langchain.vectorstores import Chroma # for the vectorization part | |
from langchain.chains import RetrievalQA # for conversing with chatGPT | |
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT) | |
from langchain import PromptTemplate | |
def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key, relevant_pages): | |
if openai_key is not None: | |
os.environ['OPENAI_API_KEY'] = open_ai_key | |
#Load the pdf file | |
loader = OnlinePDFLoader(pdf_doc.name) | |
pages = loader.load_and_split() | |
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text | |
embeddings = OpenAIEmbeddings() | |
pages_to_be_loaded =[] | |
if relevant_pages: | |
page_numbers = relevant_pages.split(",") | |
if len(page_numbers) != 0: | |
for page_number in page_numbers: | |
pageIndex = int(page_number)-1 | |
if pageIndex >=0 and pageIndex <len(pages): | |
pages_to_be_loaded.append(pages[pageIndex]) | |
#In the scenario where none of the page numbers supplied exist in the PDF, we will revert to using the entire PDF. | |
if len(pages_to_be_loaded) ==0: | |
pages_to_be_loaded = pages.copy() | |
else: | |
pages_to_be_loaded = pages.copy() | |
else: | |
pages_to_be_loaded = pages.copy() | |
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case) and the embeddings instance | |
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings) | |
#Finally, we create the bot using the RetrievalQA class | |
global pdf_qa | |
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return N/A. If you encounter a date, return it in mm/dd/yyyy format. | |
{context} | |
Question: {question} | |
Return just the answer :""" | |
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain_type_kwargs = {"prompt": PROMPT} | |
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(search_kwargs={"k": 5}), chain_type_kwargs=chain_type_kwargs, return_source_documents=False) | |
return "Ready" | |
else: | |
return "Please provide an OpenAI gpt-4 API key" | |
def answer_predefined_questions(document_type): | |
if document_type == "Deed of Trust": | |
#Create a list of questions around the relevant fields of a Deed of Trust(DOT) document | |
query1 = "what is the Loan Number?" | |
field1 = "Loan Number" | |
query2 = "who is the Borrower?" | |
field2 = "Borrower" | |
query3 = "what is the Case Number?" | |
field3 = "Case Number" | |
query4 = "what is the Mortgage Identification number?" | |
field4 = "MIN Number" | |
query5 = "DOT signed date?" | |
field5 = "Signed Date" | |
elif document_type == "Transmittal Summary": | |
#Create a list of questions around the relevant fields of a TRANSMITTAL SUMMARY document | |
query1 = "who is the Borrower?" | |
field1 = "Borrower" | |
query2 = "what is the Property Address?" | |
field2 = "Property Address" | |
query3 = "what is the Loan Term?" | |
field3 = "Loan Term" | |
query4 = "What is the Base Income?" | |
field4 = "Base Income" | |
query5 = "what is the Borrower's SSN?" | |
field5 = "Borrower SSN" | |
else: | |
return "Please choose your Document Type" | |
queryList = [query1, query2, query3, query4, query5] | |
fieldList = [field1, field2, field3, field4, field5] | |
responseList =[] | |
i = 0 | |
while i < len(queryList): | |
question = queryList[i] | |
responseList.append(pdf_qa.run(question)) | |
i = i+1 | |
return pd.DataFrame({"Field": [fieldList[0], fieldList[1], fieldList[2], fieldList[3], fieldList[4]], "Question to gpt-4": [queryList[0], queryList[1], queryList[2], queryList[3], queryList[4]], "Response from gpt-4": [responseList[0],responseList[1],responseList[2],responseList[3],responseList[4]]}) | |
def answer_query(query): | |
question = query | |
return pdf_qa.run(question) | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chatbot for PDFs - GPT-4</h1> | |
<p style="text-align: center;">Upload a .PDF, click the "Upload PDF and generate embeddings" button, <br /> | |
Wait for the Status to show Ready. You can chose to get answers to the pre-defined question set OR ask your own question <br /> | |
The app is built on GPT-4 and leverages PromptTemplate</p> | |
</div> | |
""" | |
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password") | |
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file') | |
relevant_pages = gr.Textbox(label="*Optional - List comma separated page numbers to load or leave this field blank to use the entire PDF") | |
with gr.Row(): | |
status = gr.Textbox(label="Status", placeholder="", interactive=False) | |
load_pdf = gr.Button("Upload PDF and generate embeddings").style(full_width=False) | |
with gr.Row(): | |
document_type = gr.Radio(['Deed of Trust', 'Transmittal Summary'], label="Select the Document Type") | |
answers = gr.Dataframe(label="Answers to Predefined Question set") | |
answers_for_predefined_question_set = gr.Button("Get gpt-4 answers to pre-defined question set").style(full_width=False) | |
with gr.Row(): | |
input = gr.Textbox(label="Type in your question") | |
output = gr.Textbox(label="Answer") | |
submit_query = gr.Button("Submit your own question to gpt-4").style(full_width=False) | |
load_pdf.click(load_pdf_and_generate_embeddings, inputs=[pdf_doc, openai_key, relevant_pages], outputs=status) | |
answers_for_predefined_question_set.click(answer_predefined_questions, document_type, answers) | |
submit_query.click(answer_query,input,output) | |
demo.launch() | |