Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import time | |
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf | |
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings | |
from langchain.vectorstores import Chroma # for the vectorization part | |
from langchain.chains import RetrievalQA # for conversing with chatGPT | |
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT) | |
def load_pdf(pdf_doc, open_ai_key): | |
if openai_key is not None: | |
os.environ['OPENAI_API_KEY'] = open_ai_key | |
#Load the pdf file | |
loader = OnlinePDFLoader(pdf_doc.name) | |
pages = loader.load_and_split() | |
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text | |
embeddings = OpenAIEmbeddings() | |
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data | |
vectordb = Chroma.from_documents(pages, embedding=embeddings) | |
#Finally, we create the bot using the RetrievalQAChain class | |
global pdf_qa | |
pdf_qa = RetrievalQA.from_chain_type(ChatOpenAI(temperature=0, model_name="gpt-4"), vectordb.as_retriever(), return_source_documents=False) | |
return "Ready" | |
else: | |
return "Please provide an OpenAI API key" | |
def answer_query(query): | |
question = query | |
return pdf_qa.run(question) | |
html = """ | |
<div style="text-align:center; max width: 700px;"> | |
<h1>ChatPDF</h1> | |
<p> Upload a PDF File, then click on Load PDF File <br> | |
Once the document has been loaded you can begin chatting with the PDF =) | |
</div>""" | |
css = """container{max-width:700px; margin-left:auto; margin-right:auto,padding:20px}""" | |
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo: | |
gr.HTML(html) | |
with gr.Column(): | |
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password") | |
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file') | |
with gr.Row(): | |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) | |
load_pdf = gr.Button("Load PDF to LangChain") | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
submit_btn = gr.Button("Send Message") | |
load_pdf.click(load_pdf, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False) | |
submit_btn.click(answer_query,question,chatbot) | |
#forcing a save in order to re-build the container. | |
demo.launch() | |