lekkalar's picture
Update app.py
85d6284
raw
history blame
2.69 kB
import gradio as gr
import os
import time
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
from langchain.vectorstores import Chroma # for the vectorization part
from langchain.chains import RetrievalQA # for conversing with chatGPT
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
def load_pdf(pdf_doc, open_ai_key):
if openai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
#Load the pdf file
loader = OnlinePDFLoader(pdf_doc.name)
pages = loader.load_and_split()
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
embeddings = OpenAIEmbeddings()
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data
vectordb = Chroma.from_documents(pages, embedding=embeddings)
#Finally, we create the bot using the RetrievalQAChain class
global pdf_qa
pdf_qa = RetrievalQA.from_chain_type(ChatOpenAI(temperature=0, model_name="gpt-4"), vectordb.as_retriever(), return_source_documents=False)
return "Ready"
else:
return "Please provide an OpenAI API key"
def answer_query(query):
question = query
return pdf_qa.run(question)
html = """
<div style="text-align:center; max width: 700px;">
<h1>ChatPDF</h1>
<p> Upload a PDF File, then click on Load PDF File <br>
Once the document has been loaded you can begin chatting with the PDF =)
</div>"""
css = """container{max-width:700px; margin-left:auto; margin-right:auto,padding:20px}"""
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
gr.HTML(html)
with gr.Column():
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Load PDF to LangChain")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
submit_btn = gr.Button("Send Message")
load_pdf.click(load_pdf, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
submit_btn.click(answer_query,question,chatbot)
#forcing a save in order to re-build the container.
demo.launch()