Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import time | |
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf | |
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings | |
from langchain.vectorstores import Chroma # for the vectorization part | |
from langchain.chains import RetrievalQA # for conversing with chatGPT | |
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT) | |
from langchain import PromptTemplate | |
def load_doc(pdf_doc, open_ai_key): | |
if openai_key is not None: | |
os.environ['OPENAI_API_KEY'] = open_ai_key | |
#Load the pdf file | |
loader = OnlinePDFLoader(pdf_doc.name) | |
pages = loader.load_and_split() | |
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text | |
embeddings = OpenAIEmbeddings() | |
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data | |
vectordb = Chroma.from_documents(pages, embedding=embeddings) | |
#Finally, we create the bot using the RetrievalQAChain class | |
global pdf_qa | |
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return the question followed by N/A. If you encounter a date, return it in mm/dd/yyyy format. | |
{context} | |
Question: {question} | |
Return the key fields from the question followed by the answer :""" | |
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain_type_kwargs = {"prompt": PROMPT} | |
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(), chain_type_kwargs=chain_type_kwargs, return_source_documents=False) | |
return "Ready" | |
else: | |
return "Please provide an OpenAI API key" | |
def answer_query(query): | |
question = query | |
return pdf_qa.run(question) | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chatbot for PDFs - GPT-4</h1> | |
<p style="text-align: center;">Upload a .PDF, click the "Load PDF to LangChain" button, <br /> | |
Wait for the Status to show Ready, start typing your questions. <br /> | |
The app is built on GPT-4</p> | |
</div> | |
""" | |
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password") | |
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file') | |
with gr.Row(): | |
status = gr.Textbox(label="Status", placeholder="", interactive=False) | |
load_pdf = gr.Button("Load PDF to LangChain") | |
with gr.Row(): | |
input = gr.Textbox(label="Type in your question") | |
output = gr.Textbox(label="Answer") | |
submit_query = gr.Button("Submit") | |
load_pdf.click(load_doc, inputs=[pdf_doc, openai_key], outputs=status) | |
submit_query.click(answer_query,input,output) | |
#forcing a save in order to re-build the container. | |
demo.launch() | |