Spaces:
Runtime error
Runtime error
Commit
·
2b0a298
0
Parent(s):
Duplicate from lekkalar/chatgpt-for-pdfs
Browse files- .gitattributes +34 -0
- README.md +13 -0
- app.py +102 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: ChatGPT For PDFs
|
3 |
+
emoji: 👁
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.33.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: lekkalar/chatgpt-for-pdfs
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
|
5 |
+
|
6 |
+
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
|
8 |
+
from langchain.vectorstores import Chroma # for the vectorization part
|
9 |
+
from langchain.chains import ConversationalRetrievalChain # for conversing with chatGPT
|
10 |
+
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
|
11 |
+
|
12 |
+
def loading_pdf():
|
13 |
+
return "Loading..."
|
14 |
+
|
15 |
+
def pdf_changes(pdf_doc, open_ai_key):
|
16 |
+
if openai_key is not None:
|
17 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
18 |
+
#Load the pdf file
|
19 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
20 |
+
pages = loader.load_and_split()
|
21 |
+
|
22 |
+
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
|
23 |
+
embeddings = OpenAIEmbeddings()
|
24 |
+
|
25 |
+
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case), the embeddings instance, and a directory to store the vector data
|
26 |
+
vectordb = Chroma.from_documents(pages, embedding=embeddings)
|
27 |
+
|
28 |
+
#Finally, we create the bot using the ConversationalRetrievalChain class
|
29 |
+
#A ConversationalRetrievalChain is similar to a RetrievalQAChain, except that the ConversationalRetrievalChain allows for
|
30 |
+
#passing in of a chat history which can be used to allow for follow up questions.
|
31 |
+
global pdf_qa
|
32 |
+
pdf_qa = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0, model_name="gpt-4"), vectordb.as_retriever(), return_source_documents=False)
|
33 |
+
|
34 |
+
return "Ready"
|
35 |
+
else:
|
36 |
+
return "Please provide an OpenAI API key"
|
37 |
+
|
38 |
+
def add_text(history, text):
|
39 |
+
history = history + [(text, None)]
|
40 |
+
return history, ""
|
41 |
+
|
42 |
+
def bot(history):
|
43 |
+
response = infer(history[-1][0], history)
|
44 |
+
history[-1][1] = ""
|
45 |
+
|
46 |
+
for character in response:
|
47 |
+
history[-1][1] += character
|
48 |
+
time.sleep(0.05)
|
49 |
+
yield history
|
50 |
+
|
51 |
+
|
52 |
+
def infer(question, history):
|
53 |
+
|
54 |
+
results = []
|
55 |
+
for human, ai in history[:-1]:
|
56 |
+
pair = (human, ai)
|
57 |
+
results.append(pair)
|
58 |
+
|
59 |
+
chat_history = results
|
60 |
+
print(chat_history)
|
61 |
+
query = question
|
62 |
+
result = pdf_qa({"question": query, "chat_history": chat_history})
|
63 |
+
print(result)
|
64 |
+
return result["answer"]
|
65 |
+
|
66 |
+
css="""
|
67 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
68 |
+
"""
|
69 |
+
|
70 |
+
title = """
|
71 |
+
<div style="text-align: center;max-width: 700px;">
|
72 |
+
<h1>Chatbot for PDFs - GPT-4</h1>
|
73 |
+
<p style="text-align: center;">Upload a .PDF, click the "Load PDF to LangChain" button, <br />
|
74 |
+
Wait for the Status to show Ready, start typing your questions. <br />
|
75 |
+
The app is set to store chat-history and is built on GPT-4</p>
|
76 |
+
</div>
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
with gr.Blocks(css=css) as demo:
|
81 |
+
with gr.Column(elem_id="col-container"):
|
82 |
+
gr.HTML(title)
|
83 |
+
|
84 |
+
with gr.Column():
|
85 |
+
openai_key = gr.Textbox(label="Your OpenAI API key", type="password")
|
86 |
+
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
87 |
+
with gr.Row():
|
88 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
89 |
+
load_pdf = gr.Button("Load PDF to LangChain")
|
90 |
+
|
91 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
92 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
93 |
+
submit_btn = gr.Button("Send Message")
|
94 |
+
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
95 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
|
96 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
97 |
+
bot, chatbot, chatbot
|
98 |
+
)
|
99 |
+
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
100 |
+
bot, chatbot, chatbot)
|
101 |
+
|
102 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
tiktoken
|
3 |
+
chromadb
|
4 |
+
langchain
|
5 |
+
unstructured
|
6 |
+
unstructured[local-inference]
|