File size: 5,592 Bytes
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import logging
import random
from pathlib import Path

import numpy as np
import torch
import torchaudio
import torchaudio.functional as AF
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset as DatasetBase

from ..hparams import HParams
from .distorter import Distorter
from .utils import rglob_audio_files

logger = logging.getLogger(__name__)


def _normalize(x):
    return x / (np.abs(x).max() + 1e-7)


def _collate(batch, key, tensor=True, pad=True):
    l = [d[key] for d in batch]
    if l[0] is None:
        return None
    if tensor:
        l = [torch.from_numpy(x) for x in l]
    if pad:
        assert tensor, "Can't pad non-tensor"
        l = pad_sequence(l, batch_first=True)
    return l


def praat_augment(wav, sr):
    try:
        import parselmouth
    except ImportError:
        raise ImportError("Please install parselmouth>=0.5.0 to use Praat augmentation")
    # "praat-parselmouth @ git+https://github.com/YannickJadoul/Parselmouth@0bbcca69705ed73322f3712b19d71bb3694b2540",
    # https://github.com/YannickJadoul/Parselmouth/issues/68
    # note that this function may hang if the praat version is 0.4.3
    assert wav.ndim == 1, f"wav.ndim must be 1 but got {wav.ndim}"
    sound = parselmouth.Sound(wav, sr)
    formant_shift_ratio = random.uniform(1.1, 1.5)
    pitch_range_factor = random.uniform(0.5, 2.0)
    sound = parselmouth.praat.call(sound, "Change gender", 75, 600, formant_shift_ratio, 0, pitch_range_factor, 1.0)
    wav = np.array(sound.values)[0].astype(np.float32)
    return wav


class Dataset(DatasetBase):
    def __init__(
        self,
        fg_paths: list[Path],
        hp: HParams,
        training=True,
        max_retries=100,
        silent_fg_prob=0.01,
        mode=False,
    ):
        super().__init__()

        assert mode in ("enhancer", "denoiser"), f"Invalid mode: {mode}"

        self.hp = hp
        self.fg_paths = fg_paths
        self.bg_paths = rglob_audio_files(hp.bg_dir)

        if len(self.fg_paths) == 0:
            raise ValueError(f"No foreground audio files found in {hp.fg_dir}")

        if len(self.bg_paths) == 0:
            raise ValueError(f"No background audio files found in {hp.bg_dir}")

        logger.info(f"Found {len(self.fg_paths)} foreground files and {len(self.bg_paths)} background files")

        self.training = training
        self.max_retries = max_retries
        self.silent_fg_prob = silent_fg_prob

        self.mode = mode
        self.distorter = Distorter(hp, training=training, mode=mode)

    def _load_wav(self, path, length=None, random_crop=True):
        wav, sr = torchaudio.load(path)

        wav = AF.resample(
            waveform=wav,
            orig_freq=sr,
            new_freq=self.hp.wav_rate,
            lowpass_filter_width=64,
            rolloff=0.9475937167399596,
            resampling_method="sinc_interp_kaiser",
            beta=14.769656459379492,
        )

        wav = wav.float().numpy()

        if wav.ndim == 2:
            wav = np.mean(wav, axis=0)

        if length is None and self.training:
            length = int(self.hp.training_seconds * self.hp.wav_rate)

        if length is not None:
            if random_crop:
                start = random.randint(0, max(0, len(wav) - length))
                wav = wav[start : start + length]
            else:
                wav = wav[:length]

        if length is not None and len(wav) < length:
            wav = np.pad(wav, (0, length - len(wav)))

        wav = _normalize(wav)

        return wav

    def _getitem_unsafe(self, index: int):
        fg_path = self.fg_paths[index]

        if self.training and random.random() < self.silent_fg_prob:
            fg_wav = np.zeros(int(self.hp.training_seconds * self.hp.wav_rate), dtype=np.float32)
        else:
            fg_wav = self._load_wav(fg_path)
            if random.random() < self.hp.praat_augment_prob and self.training:
                fg_wav = praat_augment(fg_wav, self.hp.wav_rate)

        if self.hp.load_fg_only:
            bg_wav = None
            fg_dwav = None
            bg_dwav = None
        else:
            fg_dwav = _normalize(self.distorter(fg_wav, self.hp.wav_rate)).astype(np.float32)
            if self.training:
                bg_path = random.choice(self.bg_paths)
            else:
                # Deterministic for validation
                bg_path = self.bg_paths[index % len(self.bg_paths)]
            bg_wav = self._load_wav(bg_path, length=len(fg_wav), random_crop=self.training)
            bg_dwav = _normalize(self.distorter(bg_wav, self.hp.wav_rate)).astype(np.float32)

        return dict(
            fg_wav=fg_wav,
            bg_wav=bg_wav,
            fg_dwav=fg_dwav,
            bg_dwav=bg_dwav,
        )

    def __getitem__(self, index: int):
        for i in range(self.max_retries):
            try:
                return self._getitem_unsafe(index)
            except Exception as e:
                if i == self.max_retries - 1:
                    raise RuntimeError(f"Failed to load {self.fg_paths[index]} after {self.max_retries} retries") from e
                logger.debug(f"Error loading {self.fg_paths[index]}: {e}, skipping")
                index = np.random.randint(0, len(self))

    def __len__(self):
        return len(self.fg_paths)

    @staticmethod
    def collate_fn(batch):
        return dict(
            fg_wavs=_collate(batch, "fg_wav"),
            bg_wavs=_collate(batch, "bg_wav"),
            fg_dwavs=_collate(batch, "fg_dwav"),
            bg_dwavs=_collate(batch, "bg_dwav"),
        )