import torch import torch.nn as nn from audio_denoiser.modules.Permute import Permute from audio_denoiser.modules.SimpleRoberta import SimpleRoberta from audio_denoiser.modules.SpectrogramScaler import SpectrogramScaler import json class AudioNoiseModel(nn.Module): def __init__(self, config: dict): super(AudioNoiseModel, self).__init__() # Encoder layers self.config = config scaler_dict = config["scaler"] self.scaler = SpectrogramScaler.from_dict(scaler_dict) self.in_channels = config.get("in_channels", 257) self.roberta_hidden_size = config.get("roberta_hidden_size", 768) self.model1 = nn.Sequential( nn.Conv1d(self.in_channels, 1024, kernel_size=1), nn.ELU(), nn.Conv1d(1024, 1024, kernel_size=1), nn.ELU(), nn.Conv1d(1024, self.in_channels, kernel_size=1), ) self.model2 = nn.Sequential( Permute(0, 2, 1), nn.Linear(self.in_channels, self.roberta_hidden_size), SimpleRoberta(num_hidden_layers=5, hidden_size=self.roberta_hidden_size), nn.Linear(self.roberta_hidden_size, self.in_channels), Permute(0, 2, 1), ) @property def sample_rate(self) -> int: return self.config.get("sample_rate", 16000) @property def n_fft(self) -> int: return self.config.get("n_fft", 512) @property def num_frames(self) -> int: return self.config.get("num_frames", 32) def forward(self, x, use_scaler: bool = False, out_scale: float = 1.0): if use_scaler: x = self.scaler(x) x1 = self.model1(x) x2 = self.model2(x) x = x1 + x2 return x * out_scale def load_audio_denosier_model(dir_path: str, device) -> AudioNoiseModel: config = json.load(open(f"{dir_path}/config.json", "r")) model = AudioNoiseModel(config) model.load_state_dict(torch.load(f"{dir_path}/pytorch_model.bin")) model.to(device) model.model1.to(device) model.model2.to(device) return model