# https://github.com/MarcoForte/FBA_Matting import cv2 import gradio as gr import numpy as np import torch from huggingface_hub import hf_hub_download from networks.models import build_model from networks.transforms import trimap_transform, normalise_image REPO_ID = "leonelhs/FBA-Matting" weights = hf_hub_download(repo_id=REPO_ID, filename="FBA.pth") model = build_model(weights) model.eval().cpu() def np_to_torch(x, permute=True): if permute: return torch.from_numpy(x).permute(2, 0, 1)[None, :, :, :].float().cpu() else: return torch.from_numpy(x)[None, :, :, :].float().cpu() def scale_input(x: np.ndarray, scale: float, scale_type) -> np.ndarray: ''' Scales inputs to multiple of 8. ''' h, w = x.shape[:2] h1 = int(np.ceil(scale * h / 8) * 8) w1 = int(np.ceil(scale * w / 8) * 8) x_scale = cv2.resize(x, (w1, h1), interpolation=scale_type) return x_scale def inference(image_np: np.ndarray, trimap_np: np.ndarray) -> [np.ndarray]: ''' Predict alpha, foreground and background. Parameters: image_np -- the image in rgb format between 0 and 1. Dimensions: (h, w, 3) trimap_np -- two channel trimap, first background then foreground. Dimensions: (h, w, 2) Returns: fg: foreground image in rgb format between 0 and 1. Dimensions: (h, w, 3) bg: background image in rgb format between 0 and 1. Dimensions: (h, w, 3) alpha: alpha matte image between 0 and 1. Dimensions: (h, w) ''' h, w = trimap_np.shape[:2] image_scale_np = scale_input(image_np, 1.0, cv2.INTER_LANCZOS4) trimap_scale_np = scale_input(trimap_np, 1.0, cv2.INTER_LANCZOS4) with torch.no_grad(): image_torch = np_to_torch(image_scale_np) trimap_torch = np_to_torch(trimap_scale_np) trimap_transformed_torch = np_to_torch( trimap_transform(trimap_scale_np), permute=False) image_transformed_torch = normalise_image( image_torch.clone()) output = model( image_torch, trimap_torch, image_transformed_torch, trimap_transformed_torch) output = cv2.resize( output[0].cpu().numpy().transpose( (1, 2, 0)), (w, h), cv2.INTER_LANCZOS4) alpha = output[:, :, 0] fg = output[:, :, 1:4] bg = output[:, :, 4:7] alpha[trimap_np[:, :, 0] == 1] = 0 alpha[trimap_np[:, :, 1] == 1] = 1 fg[alpha == 1] = image_np[alpha == 1] bg[alpha == 0] = image_np[alpha == 0] return fg, bg, alpha def read_image(name): return (cv2.imread(name) / 255.0)[:, :, ::-1] def read_trimap(name): trimap_im = cv2.imread(name, 0) / 255.0 h, w = trimap_im.shape trimap_np = np.zeros((h, w, 2)) trimap_np[trimap_im == 1, 1] = 1 trimap_np[trimap_im == 0, 0] = 1 return trimap_np def predict(image, trimap): image_np = read_image(image) trimap_np = read_trimap(trimap) return inference(image_np, trimap_np) footer = r"""