############################################################################################################ # # Source from # https://github.com/eugenesiow/practical-ml/blob/master/notebooks/Remove_Image_Background_DeepLabV3.ipynb # ############################################################################################################ import os import cv2 import torch import PIL.Image import numpy as np import gradio as gr import torchvision.transforms as transforms os.system("pip freeze") model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', weights='DEFAULT') model.eval() def image_to_tensor(image): return transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ])(image) def custom_background(background, foreground): x = (background.size[0] - foreground.size[0]) / 2 y = (background.size[1] - foreground.size[1]) / 2 box = (x, y, foreground.size[0] + x, foreground.size[1] + y) crop = background.crop(box) final_image = crop.copy() # put the foreground in the centre of the background paste_box = (0, final_image.size[1] - foreground.size[1], final_image.size[0], final_image.size[1]) final_image.paste(foreground, paste_box, mask=foreground) return final_image def make_transparent_foreground(image, mask): # split the image into channels b, g, r = cv2.split(np.array(image).astype('uint8')) # add an alpha channel with and fill all with transparent pixels (max 255) a = np.ones(mask.shape, dtype='uint8') * 255 # merge the alpha channel back alpha_im = cv2.merge([b, g, r, a], 4) # create a transparent background bg = np.zeros(alpha_im.shape) # set up the new mask new_mask = np.stack([mask, mask, mask, mask], axis=2) # copy only the foreground color pixels from the original image where mask is set return np.where(new_mask, alpha_im, bg).astype(np.uint8) def makeMask(image): input_tensor = image_to_tensor(image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch)['out'][0] output_predictions = output.argmax(0) # create a binary (black and white) mask of the profile foreground mask = output_predictions.byte().cpu().numpy() background = np.zeros(mask.shape) return np.where(mask, 255, background).astype(np.uint8) def predict(image, new_background=None): mask = makeMask(image) foreground = make_transparent_foreground(image, mask) if new_background is not None: foreground = PIL.Image.fromarray(foreground) return custom_background(new_background, foreground) return foreground title = "Zero Background" description = r""" ## Remove image background This is another implementation of eugenesiow. It has no any particular purpose than start research on AI models. """ article = r""" Questions, doubts, comments, please email 📧 `leonelhs@gmail.com` This demo is running on a CPU, if you like this project please make us a donation to run on a GPU or just give us a Github ⭐