Spaces:
Running
Running
upload examples
Browse files- .gitignore +3 -1
- examples/01.jpg +0 -0
- examples/02.jpg +0 -0
- examples/03.jpg +0 -0
- playground.py +184 -0
.gitignore
CHANGED
@@ -146,9 +146,11 @@ cython_debug/
|
|
146 |
|
147 |
# PyCharm
|
148 |
.idea/
|
149 |
-
examples/
|
150 |
task_make
|
151 |
task_upload
|
152 |
setup.py
|
|
|
|
|
|
|
153 |
|
154 |
|
|
|
146 |
|
147 |
# PyCharm
|
148 |
.idea/
|
|
|
149 |
task_make
|
150 |
task_upload
|
151 |
setup.py
|
152 |
+
playground.py
|
153 |
+
|
154 |
+
|
155 |
|
156 |
|
examples/01.jpg
ADDED
![]() |
examples/02.jpg
ADDED
![]() |
examples/03.jpg
ADDED
![]() |
playground.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL.Image
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
import huggingface_hub
|
5 |
+
import numpy as np
|
6 |
+
import onnxruntime as rt
|
7 |
+
from PIL import ImageOps
|
8 |
+
from carvekit.trimap.generator import TrimapGenerator
|
9 |
+
from pymatting import estimate_alpha_cf, estimate_foreground_ml, stack_images, load_image
|
10 |
+
|
11 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
12 |
+
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx")
|
13 |
+
rmbg_model = rt.InferenceSession(model_path, providers=providers)
|
14 |
+
|
15 |
+
trimapGenerator = TrimapGenerator()
|
16 |
+
|
17 |
+
|
18 |
+
# def custom_background(background, foreground):
|
19 |
+
# foreground = ImageOps.contain(foreground, background.size)
|
20 |
+
# x = (background.size[0] - foreground.size[0]) // 2
|
21 |
+
# y = (background.size[1] - foreground.size[1]) // 2
|
22 |
+
# background.paste(foreground, (x, y), foreground)
|
23 |
+
# return background
|
24 |
+
|
25 |
+
def custom_background(background: PIL.Image.Image, foreground: np.ndarray):
|
26 |
+
final_foreground = PIL.Image.fromarray(foreground)
|
27 |
+
x = (background.size[0] - final_foreground.size[0]) / 2
|
28 |
+
y = (background.size[1] - final_foreground.size[1]) / 2
|
29 |
+
box = (x, y, final_foreground.size[0] + x, final_foreground.size[1] + y)
|
30 |
+
crop = background.crop(box)
|
31 |
+
final_image = crop.copy()
|
32 |
+
# put the foreground in the centre of the background
|
33 |
+
paste_box = (0, final_image.size[1] - final_foreground.size[1], final_image.size[0], final_image.size[1])
|
34 |
+
final_image.paste(final_foreground, paste_box, mask=final_foreground)
|
35 |
+
return np.array(final_image)
|
36 |
+
|
37 |
+
|
38 |
+
def get_mask(img, s=1024):
|
39 |
+
img = (img / 255).astype(np.float32)
|
40 |
+
h, w = h0, w0 = img.shape[:-1]
|
41 |
+
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
42 |
+
ph, pw = s - h, s - w
|
43 |
+
img_input = np.zeros([s, s, 3], dtype=np.float32)
|
44 |
+
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
|
45 |
+
img_input = np.transpose(img_input, (2, 0, 1))
|
46 |
+
img_input = img_input[np.newaxis, :]
|
47 |
+
mask = rmbg_model.run(None, {'img': img_input})[0][0]
|
48 |
+
mask = np.transpose(mask, (1, 2, 0))
|
49 |
+
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
|
50 |
+
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis]
|
51 |
+
return mask
|
52 |
+
|
53 |
+
|
54 |
+
def change_background_color(image, color="blue"):
|
55 |
+
mask = get_mask(image)
|
56 |
+
image = (mask * image + 255 * (1 - mask)).astype(np.uint8)
|
57 |
+
mask = (mask * 255).astype(np.uint8)
|
58 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
59 |
+
image = PIL.Image.fromarray(image)
|
60 |
+
background = PIL.Image.new('RGB', image.size, color)
|
61 |
+
background.paste(image, (0, 0), image)
|
62 |
+
return background
|
63 |
+
|
64 |
+
|
65 |
+
def generate_trimap(probs, size=7, conf_threshold=0.95):
|
66 |
+
"""
|
67 |
+
This function creates a trimap based on simple dilation algorithm
|
68 |
+
Inputs [3]: an image with probabilities of each pixel being the foreground, size of dilation kernel,
|
69 |
+
foreground confidence threshold
|
70 |
+
Output : a trimap
|
71 |
+
"""
|
72 |
+
mask = (probs > 0.05).astype(np.uint8) * 255
|
73 |
+
pixels = 2 * size + 1
|
74 |
+
kernel = np.ones((pixels, pixels), np.uint8)
|
75 |
+
dilation = cv2.dilate(mask, kernel, iterations=1)
|
76 |
+
remake = np.zeros_like(mask)
|
77 |
+
remake[dilation == 255] = 127 # Set every pixel within dilated region as probably foreground.
|
78 |
+
remake[probs > conf_threshold] = 255 # Set every pixel with large enough probability as definitely foreground.
|
79 |
+
return remake
|
80 |
+
|
81 |
+
|
82 |
+
def image2gray(image):
|
83 |
+
image = PIL.Image.fromarray(image).convert("L")
|
84 |
+
return np.array(image) / 255.0
|
85 |
+
|
86 |
+
|
87 |
+
def paste(img_orig, alpha):
|
88 |
+
img_ = img_orig.astype(np.float32) / 255
|
89 |
+
alpha_ = cv2.resize(alpha, (img_.shape[1], img_.shape[0]), cv2.INTER_LANCZOS4)
|
90 |
+
fg_alpha = np.concatenate([img_, alpha_[:, :, np.newaxis]], axis=2)
|
91 |
+
cv2.imwrite("new_back.png", (fg_alpha * 255).astype(np.uint8))
|
92 |
+
|
93 |
+
|
94 |
+
def predict(image, new_background):
|
95 |
+
mask = get_mask(image)
|
96 |
+
mask = (mask * 255).astype(np.uint8)
|
97 |
+
mask = mask.repeat(3, axis=2)
|
98 |
+
|
99 |
+
trimap = generate_trimap(mask)
|
100 |
+
trimap = image2gray(trimap)
|
101 |
+
# trimap = load_image("images/trimaps/lemur_trimap.png", "GRAY")
|
102 |
+
|
103 |
+
original = PIL.Image.fromarray(image)
|
104 |
+
# mask = image2gray(mask)
|
105 |
+
mask = PIL.Image.fromarray(mask).convert("L")
|
106 |
+
trimap = trimapGenerator(original_image=original, mask=mask)
|
107 |
+
trimap = np.array(trimap) / 255.0
|
108 |
+
|
109 |
+
foreground = image / 255
|
110 |
+
alpha = estimate_alpha_cf(foreground, trimap)
|
111 |
+
foreground = estimate_foreground_ml(foreground, alpha)
|
112 |
+
cutout = stack_images(foreground, alpha)
|
113 |
+
cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
|
114 |
+
|
115 |
+
if new_background is not None:
|
116 |
+
return mask, trimap, custom_background(new_background, cutout)
|
117 |
+
return alpha, trimap, cutout
|
118 |
+
|
119 |
+
|
120 |
+
# contours
|
121 |
+
def serendipity(image, new_background):
|
122 |
+
mask = get_mask(image)
|
123 |
+
mask = 255 - mask
|
124 |
+
image = (mask * image + 255 * (1 - mask)).astype(np.uint8)
|
125 |
+
mask = (mask * 255).astype(np.uint8)
|
126 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
127 |
+
return mask, image
|
128 |
+
|
129 |
+
|
130 |
+
def negative(image, new_background):
|
131 |
+
mask = get_mask(image)
|
132 |
+
image = (mask * image + 255 * (1 - mask)).astype(np.uint8)
|
133 |
+
image = 255 - image
|
134 |
+
mask = (mask * 255).astype(np.uint8)
|
135 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
136 |
+
return mask, image
|
137 |
+
|
138 |
+
|
139 |
+
def checkit(image, new_background):
|
140 |
+
mask = get_mask(image)
|
141 |
+
mask = 255 - mask
|
142 |
+
image = (mask / image - 255 / (1 + mask)).astype(np.uint8)
|
143 |
+
mask = (mask * 255).astype(np.uint8)
|
144 |
+
mask = 255 - mask
|
145 |
+
image = np.concatenate([image, mask], axis=2, dtype=np.uint8)
|
146 |
+
mask = mask.repeat(3, axis=2)
|
147 |
+
# if new_background is not None:
|
148 |
+
# foreground = PIL.Image.fromarray(image)
|
149 |
+
# return mask, custom_background(new_background, foreground)
|
150 |
+
return mask, image
|
151 |
+
|
152 |
+
|
153 |
+
footer = r"""
|
154 |
+
<center>
|
155 |
+
<b>
|
156 |
+
Demo based on <a href='https://github.com/SkyTNT/anime-segmentation'>SkyTNT Anime Segmentation</a>
|
157 |
+
</b>
|
158 |
+
</center>
|
159 |
+
"""
|
160 |
+
|
161 |
+
with gr.Blocks(title="Face Shine") as app:
|
162 |
+
gr.HTML("<center><h1>Anime Remove Background</h1></center>")
|
163 |
+
with gr.Row():
|
164 |
+
with gr.Column():
|
165 |
+
input_img = gr.Image(type="numpy", image_mode="RGB", label="Input image")
|
166 |
+
new_img = gr.Image(type="pil", image_mode="RGBA", label="Custom background")
|
167 |
+
run_btn = gr.Button(variant="primary")
|
168 |
+
with gr.Column():
|
169 |
+
with gr.Accordion(label="Image mask", open=False):
|
170 |
+
output_mask = gr.Image(type="numpy", label="mask")
|
171 |
+
output_trimap = gr.Image(type="numpy", label="trimap")
|
172 |
+
output_img = gr.Image(type="numpy", label="result")
|
173 |
+
|
174 |
+
run_btn.click(predict, [input_img, new_img], [output_mask, output_trimap, output_img])
|
175 |
+
|
176 |
+
with gr.Row():
|
177 |
+
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
|
178 |
+
examples = gr.Dataset(components=[input_img], samples=examples_data)
|
179 |
+
examples.click(lambda x: x[0], [examples], [input_img])
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
gr.HTML(footer)
|
183 |
+
|
184 |
+
app.launch(share=False, debug=True, enable_queue=True, show_error=True)
|