Leonardo Parente commited on
Commit
045b4fe
·
1 Parent(s): 8d4146f

use together

Browse files
Files changed (1) hide show
  1. app.py +10 -27
app.py CHANGED
@@ -1,13 +1,12 @@
1
  import base64
2
  from pathlib import Path
3
  import streamlit as st
4
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
5
  from langchain.memory import ConversationBufferMemory
6
  from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain.embeddings import VoyageEmbeddings
9
- from langchain.vectorstores import SupabaseVectorStore
10
- from langchain.llms.huggingface_pipeline import HuggingFacePipeline
11
  from st_supabase_connection import SupabaseConnection
12
 
13
  msgs = StreamlitChatMessageHistory()
@@ -35,32 +34,16 @@ def load_retriever():
35
  return vector_store.as_retriever()
36
 
37
 
38
- @st.cache_resource
39
- def load_model():
40
- model_path = "llmware/bling-sheared-llama-1.3b-0.1"
41
- tokenizer = AutoTokenizer.from_pretrained(model_path)
42
- model = AutoModelForCausalLM.from_pretrained(
43
- model_path,
44
- offload_folder="offload",
45
- offload_state_dict=True,
46
- torch_dtype="auto",
47
- ).eval()
48
- pipe = pipeline(
49
- "text-generation",
50
- model=model,
51
- tokenizer=tokenizer,
52
- max_new_tokens=500,
53
- eos_token_id=tokenizer.eos_token_id,
54
- pad_token_id=tokenizer.eos_token_id,
55
- do_sample=True,
56
- temperature=0.3,
57
- )
58
- return HuggingFacePipeline(pipeline=pipe)
59
-
60
 
61
- hf = load_model()
62
  retriever = load_retriever()
63
- chat = ConversationalRetrievalChain.from_llm(hf, retriever)
64
 
65
  st.markdown(
66
  "<div style='display: flex;justify-content: center;'><img width='150' src='data:image/png;base64,{}' class='img-fluid'></div>".format(
 
1
  import base64
2
  from pathlib import Path
3
  import streamlit as st
 
4
  from langchain.memory import ConversationBufferMemory
5
  from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
6
  from langchain.chains import ConversationalRetrievalChain
7
  from langchain.embeddings import VoyageEmbeddings
8
+ from langchain.vectorstores.supabase import SupabaseVectorStore
9
+ from langchain.llms.together import Together
10
  from st_supabase_connection import SupabaseConnection
11
 
12
  msgs = StreamlitChatMessageHistory()
 
34
  return vector_store.as_retriever()
35
 
36
 
37
+ llm = Together(
38
+ model="togethercomputer/StripedHyena-Nous-7B",
39
+ temperature=0.5,
40
+ max_tokens=200,
41
+ top_k=1,
42
+ together_api_key=st.secrets.together_api_key,
43
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
 
45
  retriever = load_retriever()
46
+ chat = ConversationalRetrievalChain.from_llm(llm, retriever)
47
 
48
  st.markdown(
49
  "<div style='display: flex;justify-content: center;'><img width='150' src='data:image/png;base64,{}' class='img-fluid'></div>".format(