leoreigoto commited on
Commit
54801aa
β€’
1 Parent(s): 8f2b56f

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +50 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+ from PIL import Image
5
+ from peft import PeftConfig, PeftModel
6
+ from transformers import AutoProcessor, Blip2ForConditionalGeneration
7
+ from transformers import pipeline
8
+
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+
11
+ processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
12
+
13
+ peft_model_id = "leoreigoto/Data2_V2_BLIP2_Finetune_Caption_First_Epoch"
14
+ config = PeftConfig.from_pretrained(peft_model_id)
15
+ blip_finetune = Blip2ForConditionalGeneration.from_pretrained(config.base_model_name_or_path)#, load_in_8bit=True, device_map="auto")
16
+ blip_finetune = PeftModel.from_pretrained(blip_finetune, peft_model_id)
17
+
18
+ qa_model = pipeline("question-answering", "timpal0l/mdeberta-v3-base-squad2")
19
+
20
+
21
+ def generate_caption(pred_image):
22
+
23
+ inputs = processor(pred_image, return_tensors="pt").to(device, torch.float16)
24
+ generated_ids = blip_finetune.generate(**inputs, max_new_tokens=50)
25
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
26
+ return generated_text
27
+
28
+
29
+ def prompt_run(pred_image,prompt_box):
30
+ generated_text = generate_caption(pred_image)
31
+ generated_text = qa_model(question = prompt_box, context = generated_text)
32
+ return generated_text['answer']
33
+
34
+
35
+
36
+ with gr.Blocks() as gradio_app:
37
+ with gr.Row():
38
+ pred_image = gr.Image(height=480,width= 480,image_mode='RGB',type="pil")
39
+ with gr.Column():
40
+ button_caption = gr.Button(value='Get image caption (description)',size='sm')
41
+ prompt_box = gr.Textbox(label="Prompt",placeholder='enter prompt here')
42
+ button_prompt = gr.Button(value='Run prompt',size='sm')
43
+ with gr.Column():
44
+ output_box = gr.Textbox(label="Model output", placeholder='model output')
45
+
46
+ button_prompt.click(prompt_run,inputs=[pred_image,prompt_box], outputs=[output_box])
47
+ button_caption.click(generate_caption,inputs=[pred_image], outputs=[output_box])
48
+
49
+ gradio_app.launch()
50
+
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ peft
4
+ bitsandbytes
5
+ accelerate