File size: 18,892 Bytes
e8ebf39
 
 
0188e45
e8ebf39
c07b97b
 
ad304e2
 
0188e45
e8ebf39
 
ad304e2
0188e45
 
e8ebf39
 
0188e45
c07b97b
0188e45
41ad70e
 
c07b97b
41ad70e
 
 
 
 
c07b97b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ebf39
eedfb73
41ad70e
eedfb73
41ad70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ebf39
 
 
 
41ad70e
 
 
 
 
 
 
 
e8ebf39
 
41ad70e
 
 
 
e8ebf39
 
 
 
 
41ad70e
e8ebf39
 
 
 
 
 
 
 
 
 
41ad70e
 
 
 
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ad70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ebf39
 
 
 
 
2397955
e8ebf39
 
 
 
 
 
 
 
 
 
2397955
e8ebf39
 
 
 
2397955
e8ebf39
 
2397955
e8ebf39
2397955
e8ebf39
41ad70e
 
 
 
 
e8ebf39
 
41ad70e
e8ebf39
0188e45
41ad70e
 
 
 
 
 
eedfb73
0188e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eedfb73
0188e45
 
 
 
 
 
 
 
eedfb73
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ad70e
0188e45
ad304e2
137e5e2
ad304e2
 
 
2397955
e8ebf39
41ad70e
 
e8ebf39
 
41ad70e
 
 
ad304e2
9e4289a
4152778
 
 
9e4289a
41ad70e
e8ebf39
41ad70e
 
 
 
 
e8ebf39
 
 
 
41ad70e
e8ebf39
 
 
 
55de44e
60c4caf
41ad70e
 
 
60c4caf
e8ebf39
 
 
c07b97b
a5de09e
e8ebf39
 
 
 
 
 
 
 
 
 
60c4caf
c07b97b
 
 
 
 
 
 
 
 
e8ebf39
c07b97b
 
 
 
 
e8ebf39
c07b97b
 
 
e8ebf39
 
 
41ad70e
 
 
 
 
 
 
60c4caf
 
 
55de44e
e8ebf39
 
 
 
 
41ad70e
e8ebf39
 
 
41ad70e
 
 
 
 
 
 
e8ebf39
 
 
 
 
 
 
 
 
 
 
41ad70e
e8ebf39
 
 
 
41ad70e
60c4caf
 
 
41ad70e
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import copy
import os
from pathlib import Path
from typing import Union, Any, List

import tiktoken
from langchain.chains import create_extraction_chain
from langchain.chains.question_answering import load_qa_chain, stuff_prompt, refine_prompts, map_reduce_prompt, \
    map_rerank_prompt
from langchain.evaluation import PairwiseEmbeddingDistanceEvalChain, load_evaluator, EmbeddingDistance
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.retrievers import MultiQueryRetriever
from langchain.schema import Document
from langchain_community.vectorstores.chroma import Chroma
from langchain_core.vectorstores import VectorStore
from tqdm import tqdm

# from document_qa.embedding_visualiser import QueryVisualiser
from document_qa.grobid_processors import GrobidProcessor
from document_qa.langchain import ChromaAdvancedRetrieval


class TextMerger:
    """
    This class tries to replicate the RecursiveTextSplitter from LangChain, to preserve and merge the
    coordinate information from the PDF document.
    """

    def __init__(self, model_name=None, encoding_name="gpt2"):
        if model_name is not None:
            self.enc = tiktoken.encoding_for_model(model_name)
        else:
            self.enc = tiktoken.get_encoding(encoding_name)

    def encode(self, text, allowed_special=set(), disallowed_special="all"):
        return self.enc.encode(
            text,
            allowed_special=allowed_special,
            disallowed_special=disallowed_special,
        )

    def merge_passages(self, passages, chunk_size, tolerance=0.2):
        new_passages = []
        new_coordinates = []
        current_texts = []
        current_coordinates = []
        for idx, passage in enumerate(passages):
            text = passage['text']
            coordinates = passage['coordinates']
            current_texts.append(text)
            current_coordinates.append(coordinates)

            accumulated_text = " ".join(current_texts)

            encoded_accumulated_text = self.encode(accumulated_text)

            if len(encoded_accumulated_text) > chunk_size + chunk_size * tolerance:
                if len(current_texts) > 1:
                    new_passages.append(current_texts[:-1])
                    new_coordinates.append(current_coordinates[:-1])
                    current_texts = [current_texts[-1]]
                    current_coordinates = [current_coordinates[-1]]
                else:
                    new_passages.append(current_texts)
                    new_coordinates.append(current_coordinates)
                    current_texts = []
                    current_coordinates = []

            elif chunk_size <= len(encoded_accumulated_text) < chunk_size + chunk_size * tolerance:
                new_passages.append(current_texts)
                new_coordinates.append(current_coordinates)
                current_texts = []
                current_coordinates = []

        if len(current_texts) > 0:
            new_passages.append(current_texts)
            new_coordinates.append(current_coordinates)

        new_passages_struct = []
        for i, passages in enumerate(new_passages):
            text = " ".join(passages)
            coordinates = ";".join(new_coordinates[i])

            new_passages_struct.append(
                {
                    "text": text,
                    "coordinates": coordinates,
                    "type": "aggregated chunks",
                    "section": "mixed",
                    "subSection": "mixed"
                }
            )

        return new_passages_struct


class BaseRetrieval:

    def __init__(
            self,
            persist_directory: Path,
            embedding_function
    ):
        self.embedding_function = embedding_function
        self.persist_directory = persist_directory


class NER_Retrival(VectorStore):
    """
    This class implement a retrieval based on NER models.
    This is an alternative retrieval to embeddings that relies on extracted entities.
    """
    pass


engines = {
    'chroma': ChromaAdvancedRetrieval,
    'ner': NER_Retrival
}


class DataStorage:
    embeddings_dict = {}
    embeddings_map_from_md5 = {}
    embeddings_map_to_md5 = {}

    def __init__(
            self,
            embedding_function,
            root_path: Path = None,
            engine=ChromaAdvancedRetrieval,
    ) -> None:
        self.root_path = root_path
        self.engine = engine
        self.embedding_function = embedding_function

        if root_path is not None:
            self.embeddings_root_path = root_path
            if not os.path.exists(root_path):
                os.makedirs(root_path)
            else:
                self.load_embeddings(self.embeddings_root_path)

    def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
        """
        Load the vector storage assuming they are all persisted and stored in a single directory.
        The root path of the embeddings containing one data store for each document in each subdirectory
        """

        embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()]

        if len(embeddings_directories) == 0:
            print("No available embeddings")
            return

        for embedding_document_dir in embeddings_directories:
            self.embeddings_dict[embedding_document_dir.name] = self.engine(
                persist_directory=embedding_document_dir.path,
                embedding_function=self.embedding_function
            )

            filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
            if filename_list:
                filenam = filename_list[0].name.replace(".storage_filename", "")
                self.embeddings_map_from_md5[embedding_document_dir.name] = filenam
                self.embeddings_map_to_md5[filenam] = embedding_document_dir.name

        print("Embedding loaded: ", len(self.embeddings_dict.keys()))

    def get_loaded_embeddings_ids(self):
        return list(self.embeddings_dict.keys())

    def get_md5_from_filename(self, filename):
        return self.embeddings_map_to_md5[filename]

    def get_filename_from_md5(self, md5):
        return self.embeddings_map_from_md5[md5]

    def embed_document(self, doc_id, texts, metadatas):
        if doc_id not in self.embeddings_dict.keys():
            self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
                                                                  embedding=self.embedding_function,
                                                                  metadatas=metadatas,
                                                                  collection_name=doc_id)
        else:
            # Workaround Chroma (?) breaking change
            self.embeddings_dict[doc_id].delete_collection()
            self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
                                                                  embedding=self.embedding_function,
                                                                  metadatas=metadatas,
                                                                  collection_name=doc_id)

        self.embeddings_root_path = None


class DocumentQAEngine:
    llm = None
    qa_chain_type = None

    default_prompts = {
        'stuff': stuff_prompt,
        'refine': refine_prompts,
        "map_reduce": map_reduce_prompt,
        "map_rerank": map_rerank_prompt
    }

    def __init__(self,
                 llm,
                 data_storage: DataStorage,
                 qa_chain_type="stuff",
                 grobid_url=None,
                 memory=None
                 ):

        self.llm = llm
        self.memory = memory
        self.chain = load_qa_chain(llm, chain_type=qa_chain_type)
        self.text_merger = TextMerger()
        self.data_storage = data_storage

        if grobid_url:
            self.grobid_processor = GrobidProcessor(grobid_url)

    def query_document(
            self,
            query: str,
            doc_id,
            output_parser=None,
            context_size=4,
            extraction_schema=None,
            verbose=False
    ) -> (Any, str):
        # self.load_embeddings(self.embeddings_root_path)

        if verbose:
            print(query)

        response, coordinates = self._run_query(doc_id, query, context_size=context_size)
        response = response['output_text'] if 'output_text' in response else response

        if verbose:
            print(doc_id, "->", response)

        if output_parser:
            try:
                return self._parse_json(response, output_parser), response
            except Exception as oe:
                print("Failing to parse the response", oe)
                return None, response, coordinates
        elif extraction_schema:
            try:
                chain = create_extraction_chain(extraction_schema, self.llm)
                parsed = chain.run(response)
                return parsed, response, coordinates
            except Exception as oe:
                print("Failing to parse the response", oe)
                return None, response, coordinates
        else:
            return None, response, coordinates

    def query_storage(self, query: str, doc_id, context_size=4) -> (List[Document], list):
        """
        Returns the context related to a given query
        """
        documents, coordinates = self._get_context(doc_id, query, context_size)

        context_as_text = [doc.page_content for doc in documents]
        return context_as_text, coordinates

    def query_storage_and_embeddings(self, query: str, doc_id, context_size=4) -> List[Document]:
        """
        Returns both the context and the embedding information from a given query
        """
        db = self.data_storage.embeddings_dict[doc_id]
        retriever = db.as_retriever(search_kwargs={"k": context_size}, search_type="similarity_with_embeddings")
        relevant_documents = retriever.get_relevant_documents(query)

        return relevant_documents

    def analyse_query(self, query, doc_id, context_size=4):
        db = self.data_storage.embeddings_dict[doc_id]
        # retriever = db.as_retriever(
        #     search_kwargs={"k": context_size, 'score_threshold': 0.0},
        #     search_type="similarity_score_threshold"
        # )
        retriever = db.as_retriever(search_kwargs={"k": context_size}, search_type="similarity_with_embeddings")
        relevant_documents = retriever.get_relevant_documents(query)
        relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
                                         for doc in
                                         relevant_documents]
        all_documents = db.get(include=['documents', 'metadatas', 'embeddings'])
        # all_documents_embeddings = all_documents["embeddings"]
        # query_embedding = db._embedding_function.embed_query(query)

        # distance_evaluator = load_evaluator("pairwise_embedding_distance",
        #                               embeddings=db._embedding_function,
        #                               distance_metric=EmbeddingDistance.EUCLIDEAN)

        # distance_evaluator.evaluate_string_pairs(query=query_embedding, documents="")

        similarities = [doc.metadata['__similarity'] for doc in relevant_documents]
        min_similarity = min(similarities)
        mean_similarity = sum(similarities) / len(similarities)
        coefficient = min_similarity - mean_similarity

        return f"Coefficient: {coefficient}, (Min similarity {min_similarity}, Mean similarity: {mean_similarity})", relevant_document_coordinates

    def _parse_json(self, response, output_parser):
        system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
                         "that can process text and transform it to JSON."
        human_message = """Transform the text between three double quotes in JSON.\n\n\n\n
        {format_instructions}\n\nText: \"\"\"{text}\"\"\""""

        system_message_prompt = SystemMessagePromptTemplate.from_template(system_message)
        human_message_prompt = HumanMessagePromptTemplate.from_template(human_message)

        prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

        results = self.llm(
            prompt_template.format_prompt(
                text=response,
                format_instructions=output_parser.get_format_instructions()
            ).to_messages()
        )
        parsed_output = output_parser.parse(results.content)

        return parsed_output

    def _run_query(self, doc_id, query, context_size=4) -> (List[Document], list):
        relevant_documents, relevant_document_coordinates = self._get_context(doc_id, query, context_size)
        response = self.chain.run(input_documents=relevant_documents,
                                  question=query)

        if self.memory:
            self.memory.save_context({"input": query}, {"output": response})
        return response, relevant_document_coordinates

    def _get_context(self, doc_id, query, context_size=4) -> (List[Document], list):
        db = self.data_storage.embeddings_dict[doc_id]
        retriever = db.as_retriever(search_kwargs={"k": context_size})
        relevant_documents = retriever.get_relevant_documents(query)
        relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
                                         for doc in
                                         relevant_documents]
        if self.memory and len(self.memory.buffer_as_messages) > 0:
            relevant_documents.append(
                Document(
                    page_content="""Following, the previous question and answers. Use these information only when in the question there are unspecified references:\n{}\n\n""".format(
                        self.memory.buffer_as_str))
            )
        return relevant_documents, relevant_document_coordinates

    def get_full_context_by_document(self, doc_id):
        """
        Return the full context from the document
        """
        db = self.data_storage.embeddings_dict[doc_id]
        docs = db.get()
        return docs['documents']

    def _get_context_multiquery(self, doc_id, query, context_size=4):
        db = self.data_storage.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
        multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
        relevant_documents = multi_query_retriever.get_relevant_documents(query)
        return relevant_documents

    def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False):
        """
        Extract text from documents using Grobid.
        - if chunk_size is < 0, keeps each paragraph separately
        - if chunk_size > 0, aggregate all paragraphs and split them again using an approximate chunk size
        """
        if verbose:
            print("File", pdf_file_path)
        filename = Path(pdf_file_path).stem
        coordinates = True  # if chunk_size == -1 else False
        structure = self.grobid_processor.process_structure(pdf_file_path, coordinates=coordinates)

        biblio = structure['biblio']
        biblio['filename'] = filename.replace(" ", "_")

        if verbose:
            print("Generating embeddings for:", hash, ", filename: ", filename)

        texts = []
        metadatas = []
        ids = []

        if chunk_size > 0:
            new_passages = self.text_merger.merge_passages(structure['passages'], chunk_size=chunk_size)
        else:
            new_passages = structure['passages']

        for passage in new_passages:
            biblio_copy = copy.copy(biblio)
            if len(str.strip(passage['text'])) > 0:
                texts.append(passage['text'])

                biblio_copy['type'] = passage['type']
                biblio_copy['section'] = passage['section']
                biblio_copy['subSection'] = passage['subSection']
                biblio_copy['coordinates'] = passage['coordinates']
                metadatas.append(biblio_copy)

                # ids.append(passage['passage_id'])

            ids = [id for id, t in enumerate(new_passages)]

        return texts, metadatas, ids

    def create_memory_embeddings(
            self,
            pdf_path,
            doc_id=None,
            chunk_size=500,
            perc_overlap=0.1
    ):
        texts, metadata, ids = self.get_text_from_document(
            pdf_path,
            chunk_size=chunk_size,
            perc_overlap=perc_overlap)
        if doc_id:
            hash = doc_id
        else:
            hash = metadata[0]['hash']

        self.data_storage.embed_document(hash, texts, metadata)

        return hash

    def create_embeddings(
            self,
            pdfs_dir_path: Path,
            chunk_size=500,
            perc_overlap=0.1,
            include_biblio=False
    ):
        input_files = []
        for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
            for file_ in files:
                if not (file_.lower().endswith(".pdf")):
                    continue
                input_files.append(os.path.join(root, file_))

        for input_file in tqdm(input_files, total=len(input_files), unit='document',
                               desc="Grobid + embeddings processing"):

            md5 = self.calculate_md5(input_file)
            data_path = os.path.join(self.data_storage.embeddings_root_path, md5)

            if os.path.exists(data_path):
                print(data_path, "exists. Skipping it ")
                continue
            # include = ["biblio"] if include_biblio else []
            texts, metadata, ids = self.get_text_from_document(
                input_file,
                chunk_size=chunk_size,
                perc_overlap=perc_overlap)
            filename = metadata[0]['filename']

            vector_db_document = Chroma.from_texts(texts,
                                                   metadatas=metadata,
                                                   embedding=self.embedding_function,
                                                   persist_directory=data_path)
            vector_db_document.persist()

            with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo:
                fo.write("")

    @staticmethod
    def calculate_md5(input_file: Union[Path, str]):
        import hashlib
        md5_hash = hashlib.md5()
        with open(input_file, 'rb') as fi:
            md5_hash.update(fi.read())
        return md5_hash.hexdigest().upper()