File size: 10,587 Bytes
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
ae04b9d
8893df9
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2f5314
 
e8ebf39
 
 
 
 
70f085d
 
 
e8ebf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import copy
import os
from pathlib import Path
from typing import Union, Any

from grobid_client.grobid_client import GrobidClient
from langchain.chains import create_extraction_chain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.retrievers import MultiQueryRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from tqdm import tqdm

from document_qa.grobid_processors import GrobidProcessor


class DocumentQAEngine:
    llm = None
    qa_chain_type = None
    embedding_function = None
    embeddings_dict = {}
    embeddings_map_from_md5 = {}
    embeddings_map_to_md5 = {}

    def __init__(self, llm, embedding_function, qa_chain_type="stuff", embeddings_root_path=None, grobid_url=None):
        self.embedding_function = embedding_function
        self.llm = llm
        self.chain = load_qa_chain(llm, chain_type=qa_chain_type)

        if embeddings_root_path is not None:
            self.embeddings_root_path = embeddings_root_path
            if not os.path.exists(embeddings_root_path):
                os.makedirs(embeddings_root_path)
            else:
                self.load_embeddings(self.embeddings_root_path)

        if grobid_url:
            self.grobid_url = grobid_url
            grobid_client = GrobidClient(
                grobid_server=self.grobid_url,
                batch_size=1000,
                coordinates=["p"],
                sleep_time=5,
                timeout=60,
                check_server=True
            )
            self.grobid_processor = GrobidProcessor(grobid_client)

    def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
        """
        Load the embeddings assuming they are all persisted and stored in a single directory.
        The root path of the embeddings containing one data store for each document in each subdirectory
        """

        embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()]

        if len(embeddings_directories) == 0:
            print("No available embeddings")
            return

        for embedding_document_dir in embeddings_directories:
            self.embeddings_dict[embedding_document_dir.name] = Chroma(persist_directory=embedding_document_dir.path,
                                                                       embedding_function=self.embedding_function)

            filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
            if filename_list:
                filenam = filename_list[0].name.replace(".storage_filename", "")
                self.embeddings_map_from_md5[embedding_document_dir.name] = filenam
                self.embeddings_map_to_md5[filenam] = embedding_document_dir.name

        print("Embedding loaded: ", len(self.embeddings_dict.keys()))

    def get_loaded_embeddings_ids(self):
        return list(self.embeddings_dict.keys())

    def get_md5_from_filename(self, filename):
        return self.embeddings_map_to_md5[filename]

    def get_filename_from_md5(self, md5):
        return self.embeddings_map_from_md5[md5]

    def query_document(self, query: str, doc_id, output_parser=None, context_size=4, extraction_schema=None,
                       verbose=False) -> (
            Any, str):
        # self.load_embeddings(self.embeddings_root_path)

        if verbose:
            print(query)

        response = self._run_query(doc_id, query, context_size=context_size)
        response = response['output_text'] if 'output_text' in response else response

        if verbose:
            print(doc_id, "->", response)

        if output_parser:
            try:
                return self._parse_json(response, output_parser), response
            except Exception as oe:
                print("Failing to parse the response", oe)
                return None, response
        elif extraction_schema:
            try:
                chain = create_extraction_chain(extraction_schema, self.llm)
                parsed = chain.run(response)
                return parsed, response
            except Exception as oe:
                print("Failing to parse the response", oe)
                return None, response
        else:
            return None, response

    def query_storage(self, query: str, doc_id, context_size=4):
        documents = self._get_context(doc_id, query, context_size)

        context_as_text = [doc.page_content for doc in documents]
        return context_as_text

    def _parse_json(self, response, output_parser):
        system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
                         "that can process text and transform it to JSON."
        human_message = """Transform the text between three double quotes in JSON.\n\n\n\n
        {format_instructions}\n\nText: \"\"\"{text}\"\"\""""

        system_message_prompt = SystemMessagePromptTemplate.from_template(system_message)
        human_message_prompt = HumanMessagePromptTemplate.from_template(human_message)

        prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

        results = self.llm(
            prompt_template.format_prompt(
                text=response,
                format_instructions=output_parser.get_format_instructions()
            ).to_messages()
        )
        parsed_output = output_parser.parse(results.content)

        return parsed_output

    def _run_query(self, doc_id, query, context_size=4):
        relevant_documents = self._get_context(doc_id, query, context_size)
        return self.chain.run(input_documents=relevant_documents, question=query)
        # return self.chain({"input_documents": relevant_documents, "question": prompt_chat_template}, return_only_outputs=True)

    def _get_context(self, doc_id, query, context_size=4):
        db = self.embeddings_dict[doc_id]
        retriever = db.as_retriever(search_kwargs={"k": context_size})
        relevant_documents = retriever.get_relevant_documents(query)
        return relevant_documents

    def get_all_context_by_document(self, doc_id):
        db = self.embeddings_dict[doc_id]
        docs = db.get()
        return docs['documents']

    def _get_context_multiquery(self, doc_id, query, context_size=4):
        db = self.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
        multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
        relevant_documents = multi_query_retriever.get_relevant_documents(query)
        return relevant_documents

    def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False):
        if verbose:
            print("File", pdf_file_path)
        filename = Path(pdf_file_path).stem
        structure = self.grobid_processor.process_structure(pdf_file_path)

        biblio = structure['biblio']
        biblio['filename'] = filename.replace(" ", "_")

        if verbose:
            print("Generating embeddings for:", hash, ", filename: ", filename)

        texts = []
        metadatas = []
        ids = []
        if chunk_size < 0:
            for passage in structure['passages']:
                biblio_copy = copy.copy(biblio)
                if len(str.strip(passage['text'])) > 0:
                    texts.append(passage['text'])

                    biblio_copy['type'] = passage['type']
                    biblio_copy['section'] = passage['section']
                    biblio_copy['subSection'] = passage['subSection']
                    metadatas.append(biblio_copy)

                    ids.append(passage['passage_id'])
        else:
            document_text = " ".join([passage['text'] for passage in structure['passages']])
            # text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
            text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
                chunk_size=chunk_size,
                chunk_overlap=chunk_size * perc_overlap
            )
            texts = text_splitter.split_text(document_text)
            metadatas = [biblio for _ in range(len(texts))]
            ids = [id for id, t in enumerate(texts)]

        return texts, metadatas, ids

    def create_memory_embeddings(self, pdf_path, doc_id=None, chunk_size=500, perc_overlap=0.1):
        texts, metadata, ids = self.get_text_from_document(pdf_path, chunk_size=chunk_size, perc_overlap=perc_overlap)
        if doc_id:
            hash = doc_id
        else:
            hash = metadata[0]['hash']

        if hash not in self.embeddings_dict.keys():
            self.embeddings_dict[hash] = Chroma.from_texts(texts, embedding=self.embedding_function, metadatas=metadata, collection_name=hash)

        self.embeddings_root_path = None

        return hash

    def create_embeddings(self, pdfs_dir_path: Path):
        input_files = []
        for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
            for file_ in files:
                if not (file_.lower().endswith(".pdf")):
                    continue
                input_files.append(os.path.join(root, file_))

        for input_file in tqdm(input_files, total=len(input_files), unit='document',
                               desc="Grobid + embeddings processing"):

            md5 = self.calculate_md5(input_file)
            data_path = os.path.join(self.embeddings_root_path, md5)

            if os.path.exists(data_path):
                print(data_path, "exists. Skipping it ")
                continue

            texts, metadata, ids = self.get_text_from_document(input_file, chunk_size=500, perc_overlap=0.1)
            filename = metadata[0]['filename']

            vector_db_document = Chroma.from_texts(texts,
                                                   metadatas=metadata,
                                                   embedding=self.embedding_function,
                                                   persist_directory=data_path)
            vector_db_document.persist()

            with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo:
                fo.write("")

    @staticmethod
    def calculate_md5(input_file: Union[Path, str]):
        import hashlib
        md5_hash = hashlib.md5()
        with open(input_file, 'rb') as fi:
            md5_hash.update(fi.read())
        return md5_hash.hexdigest().upper()