Spaces:
Running
Running
File size: 18,725 Bytes
e8ebf39 0188e45 e8ebf39 c07b97b ad304e2 e8ebf39 ad304e2 0188e45 e8ebf39 0188e45 c07b97b 0188e45 41ad70e c07b97b 41ad70e c07b97b e8ebf39 eedfb73 41ad70e eedfb73 41ad70e e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 2397955 e8ebf39 2397955 e8ebf39 2397955 e8ebf39 2397955 e8ebf39 2397955 e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 0188e45 41ad70e 848c18f eedfb73 0188e45 848c18f 0188e45 eedfb73 0188e45 eedfb73 e8ebf39 41ad70e 0188e45 ad304e2 137e5e2 ad304e2 2397955 e8ebf39 41ad70e e8ebf39 848c18f 41ad70e ad304e2 9e4289a 4152778 9e4289a 41ad70e e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 848c18f e8ebf39 55de44e 60c4caf 41ad70e 60c4caf e8ebf39 c07b97b a5de09e e8ebf39 60c4caf c07b97b e8ebf39 c07b97b e8ebf39 c07b97b e8ebf39 41ad70e 60c4caf 55de44e e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 41ad70e e8ebf39 41ad70e 60c4caf 41ad70e e8ebf39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import copy
import os
from pathlib import Path
from typing import Union, Any, List
import tiktoken
from langchain.chains import create_extraction_chain
from langchain.chains.question_answering import load_qa_chain, stuff_prompt, refine_prompts, map_reduce_prompt, \
map_rerank_prompt
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.retrievers import MultiQueryRetriever
from langchain.schema import Document
from langchain_community.vectorstores.chroma import Chroma
from langchain_core.vectorstores import VectorStore
from tqdm import tqdm
# from document_qa.embedding_visualiser import QueryVisualiser
from document_qa.grobid_processors import GrobidProcessor
from document_qa.langchain import ChromaAdvancedRetrieval
class TextMerger:
"""
This class tries to replicate the RecursiveTextSplitter from LangChain, to preserve and merge the
coordinate information from the PDF document.
"""
def __init__(self, model_name=None, encoding_name="gpt2"):
if model_name is not None:
self.enc = tiktoken.encoding_for_model(model_name)
else:
self.enc = tiktoken.get_encoding(encoding_name)
def encode(self, text, allowed_special=set(), disallowed_special="all"):
return self.enc.encode(
text,
allowed_special=allowed_special,
disallowed_special=disallowed_special,
)
def merge_passages(self, passages, chunk_size, tolerance=0.2):
new_passages = []
new_coordinates = []
current_texts = []
current_coordinates = []
for idx, passage in enumerate(passages):
text = passage['text']
coordinates = passage['coordinates']
current_texts.append(text)
current_coordinates.append(coordinates)
accumulated_text = " ".join(current_texts)
encoded_accumulated_text = self.encode(accumulated_text)
if len(encoded_accumulated_text) > chunk_size + chunk_size * tolerance:
if len(current_texts) > 1:
new_passages.append(current_texts[:-1])
new_coordinates.append(current_coordinates[:-1])
current_texts = [current_texts[-1]]
current_coordinates = [current_coordinates[-1]]
else:
new_passages.append(current_texts)
new_coordinates.append(current_coordinates)
current_texts = []
current_coordinates = []
elif chunk_size <= len(encoded_accumulated_text) < chunk_size + chunk_size * tolerance:
new_passages.append(current_texts)
new_coordinates.append(current_coordinates)
current_texts = []
current_coordinates = []
if len(current_texts) > 0:
new_passages.append(current_texts)
new_coordinates.append(current_coordinates)
new_passages_struct = []
for i, passages in enumerate(new_passages):
text = " ".join(passages)
coordinates = ";".join(new_coordinates[i])
new_passages_struct.append(
{
"text": text,
"coordinates": coordinates,
"type": "aggregated chunks",
"section": "mixed",
"subSection": "mixed"
}
)
return new_passages_struct
class BaseRetrieval:
def __init__(
self,
persist_directory: Path,
embedding_function
):
self.embedding_function = embedding_function
self.persist_directory = persist_directory
class NER_Retrival(VectorStore):
"""
This class implement a retrieval based on NER models.
This is an alternative retrieval to embeddings that relies on extracted entities.
"""
pass
engines = {
'chroma': ChromaAdvancedRetrieval,
'ner': NER_Retrival
}
class DataStorage:
embeddings_dict = {}
embeddings_map_from_md5 = {}
embeddings_map_to_md5 = {}
def __init__(
self,
embedding_function,
root_path: Path = None,
engine=ChromaAdvancedRetrieval,
) -> None:
self.root_path = root_path
self.engine = engine
self.embedding_function = embedding_function
if root_path is not None:
self.embeddings_root_path = root_path
if not os.path.exists(root_path):
os.makedirs(root_path)
else:
self.load_embeddings(self.embeddings_root_path)
def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
"""
Load the vector storage assuming they are all persisted and stored in a single directory.
The root path of the embeddings containing one data store for each document in each subdirectory
"""
embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()]
if len(embeddings_directories) == 0:
print("No available embeddings")
return
for embedding_document_dir in embeddings_directories:
self.embeddings_dict[embedding_document_dir.name] = self.engine(
persist_directory=embedding_document_dir.path,
embedding_function=self.embedding_function
)
filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
if filename_list:
filenam = filename_list[0].name.replace(".storage_filename", "")
self.embeddings_map_from_md5[embedding_document_dir.name] = filenam
self.embeddings_map_to_md5[filenam] = embedding_document_dir.name
print("Embedding loaded: ", len(self.embeddings_dict.keys()))
def get_loaded_embeddings_ids(self):
return list(self.embeddings_dict.keys())
def get_md5_from_filename(self, filename):
return self.embeddings_map_to_md5[filename]
def get_filename_from_md5(self, md5):
return self.embeddings_map_from_md5[md5]
def embed_document(self, doc_id, texts, metadatas):
if doc_id not in self.embeddings_dict.keys():
self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
embedding=self.embedding_function,
metadatas=metadatas,
collection_name=doc_id)
else:
# Workaround Chroma (?) breaking change
self.embeddings_dict[doc_id].delete_collection()
self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
embedding=self.embedding_function,
metadatas=metadatas,
collection_name=doc_id)
self.embeddings_root_path = None
class DocumentQAEngine:
llm = None
qa_chain_type = None
default_prompts = {
'stuff': stuff_prompt,
'refine': refine_prompts,
"map_reduce": map_reduce_prompt,
"map_rerank": map_rerank_prompt
}
def __init__(self,
llm,
data_storage: DataStorage,
qa_chain_type="stuff",
grobid_url=None,
memory=None
):
self.llm = llm
self.memory = memory
self.chain = load_qa_chain(llm, chain_type=qa_chain_type)
self.text_merger = TextMerger()
self.data_storage = data_storage
if grobid_url:
self.grobid_processor = GrobidProcessor(grobid_url)
def query_document(
self,
query: str,
doc_id,
output_parser=None,
context_size=4,
extraction_schema=None,
verbose=False
) -> (Any, str):
# self.load_embeddings(self.embeddings_root_path)
if verbose:
print(query)
response, coordinates = self._run_query(doc_id, query, context_size=context_size)
response = response['output_text'] if 'output_text' in response else response
if verbose:
print(doc_id, "->", response)
if output_parser:
try:
return self._parse_json(response, output_parser), response
except Exception as oe:
print("Failing to parse the response", oe)
return None, response, coordinates
elif extraction_schema:
try:
chain = create_extraction_chain(extraction_schema, self.llm)
parsed = chain.run(response)
return parsed, response, coordinates
except Exception as oe:
print("Failing to parse the response", oe)
return None, response, coordinates
else:
return None, response, coordinates
def query_storage(self, query: str, doc_id, context_size=4) -> (List[Document], list):
"""
Returns the context related to a given query
"""
documents, coordinates = self._get_context(doc_id, query, context_size)
context_as_text = [doc.page_content for doc in documents]
return context_as_text, coordinates
def query_storage_and_embeddings(self, query: str, doc_id, context_size=4) -> List[Document]:
"""
Returns both the context and the embedding information from a given query
"""
db = self.data_storage.embeddings_dict[doc_id]
retriever = db.as_retriever(search_kwargs={"k": context_size}, search_type="similarity_with_embeddings")
relevant_documents = retriever.invoke(query)
return relevant_documents
def analyse_query(self, query, doc_id, context_size=4):
db = self.data_storage.embeddings_dict[doc_id]
# retriever = db.as_retriever(
# search_kwargs={"k": context_size, 'score_threshold': 0.0},
# search_type="similarity_score_threshold"
# )
retriever = db.as_retriever(search_kwargs={"k": context_size}, search_type="similarity_with_embeddings")
relevant_documents = retriever.invoke(query)
relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
for doc in
relevant_documents]
all_documents = db.get(include=['documents', 'metadatas', 'embeddings'])
# all_documents_embeddings = all_documents["embeddings"]
# query_embedding = db._embedding_function.embed_query(query)
# distance_evaluator = load_evaluator("pairwise_embedding_distance",
# embeddings=db._embedding_function,
# distance_metric=EmbeddingDistance.EUCLIDEAN)
# distance_evaluator.evaluate_string_pairs(query=query_embedding, documents="")
similarities = [doc.metadata['__similarity'] for doc in relevant_documents]
min_similarity = min(similarities)
mean_similarity = sum(similarities) / len(similarities)
coefficient = min_similarity - mean_similarity
return f"Coefficient: {coefficient}, (Min similarity {min_similarity}, Mean similarity: {mean_similarity})", relevant_document_coordinates
def _parse_json(self, response, output_parser):
system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
"that can process text and transform it to JSON."
human_message = """Transform the text between three double quotes in JSON.\n\n\n\n
{format_instructions}\n\nText: \"\"\"{text}\"\"\""""
system_message_prompt = SystemMessagePromptTemplate.from_template(system_message)
human_message_prompt = HumanMessagePromptTemplate.from_template(human_message)
prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
results = self.llm(
prompt_template.format_prompt(
text=response,
format_instructions=output_parser.get_format_instructions()
).to_messages()
)
parsed_output = output_parser.parse(results.content)
return parsed_output
def _run_query(self, doc_id, query, context_size=4) -> (List[Document], list):
relevant_documents, relevant_document_coordinates = self._get_context(doc_id, query, context_size)
response = self.chain.run(input_documents=relevant_documents,
question=query)
if self.memory:
self.memory.save_context({"input": query}, {"output": response})
return response, relevant_document_coordinates
def _get_context(self, doc_id, query, context_size=4) -> (List[Document], list):
db = self.data_storage.embeddings_dict[doc_id]
retriever = db.as_retriever(search_kwargs={"k": context_size})
relevant_documents = retriever.invoke(query)
relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
for doc in
relevant_documents]
if self.memory and len(self.memory.buffer_as_messages) > 0:
relevant_documents.append(
Document(
page_content="""Following, the previous question and answers. Use these information only when in the question there are unspecified references:\n{}\n\n""".format(
self.memory.buffer_as_str))
)
return relevant_documents, relevant_document_coordinates
def get_full_context_by_document(self, doc_id):
"""
Return the full context from the document
"""
db = self.data_storage.embeddings_dict[doc_id]
docs = db.get()
return docs['documents']
def _get_context_multiquery(self, doc_id, query, context_size=4):
db = self.data_storage.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
relevant_documents = multi_query_retriever.invoke(query)
return relevant_documents
def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False):
"""
Extract text from documents using Grobid.
- if chunk_size is < 0, keeps each paragraph separately
- if chunk_size > 0, aggregate all paragraphs and split them again using an approximate chunk size
"""
if verbose:
print("File", pdf_file_path)
filename = Path(pdf_file_path).stem
coordinates = True # if chunk_size == -1 else False
structure = self.grobid_processor.process_structure(pdf_file_path, coordinates=coordinates)
biblio = structure['biblio']
biblio['filename'] = filename.replace(" ", "_")
if verbose:
print("Generating embeddings for:", hash, ", filename: ", filename)
texts = []
metadatas = []
ids = []
if chunk_size > 0:
new_passages = self.text_merger.merge_passages(structure['passages'], chunk_size=chunk_size)
else:
new_passages = structure['passages']
for passage in new_passages:
biblio_copy = copy.copy(biblio)
if len(str.strip(passage['text'])) > 0:
texts.append(passage['text'])
biblio_copy['type'] = passage['type']
biblio_copy['section'] = passage['section']
biblio_copy['subSection'] = passage['subSection']
biblio_copy['coordinates'] = passage['coordinates']
metadatas.append(biblio_copy)
# ids.append(passage['passage_id'])
ids = [id for id, t in enumerate(new_passages)]
return texts, metadatas, ids
def create_memory_embeddings(
self,
pdf_path,
doc_id=None,
chunk_size=500,
perc_overlap=0.1
):
texts, metadata, ids = self.get_text_from_document(
pdf_path,
chunk_size=chunk_size,
perc_overlap=perc_overlap)
if doc_id:
hash = doc_id
else:
hash = metadata[0]['hash']
self.data_storage.embed_document(hash, texts, metadata)
return hash
def create_embeddings(
self,
pdfs_dir_path: Path,
chunk_size=500,
perc_overlap=0.1,
include_biblio=False
):
input_files = []
for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
for file_ in files:
if not (file_.lower().endswith(".pdf")):
continue
input_files.append(os.path.join(root, file_))
for input_file in tqdm(input_files, total=len(input_files), unit='document',
desc="Grobid + embeddings processing"):
md5 = self.calculate_md5(input_file)
data_path = os.path.join(self.data_storage.embeddings_root_path, md5)
if os.path.exists(data_path):
print(data_path, "exists. Skipping it ")
continue
# include = ["biblio"] if include_biblio else []
texts, metadata, ids = self.get_text_from_document(
input_file,
chunk_size=chunk_size,
perc_overlap=perc_overlap)
filename = metadata[0]['filename']
vector_db_document = Chroma.from_texts(texts,
metadatas=metadata,
embedding=self.embedding_function,
persist_directory=data_path)
vector_db_document.persist()
with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo:
fo.write("")
@staticmethod
def calculate_md5(input_file: Union[Path, str]):
import hashlib
md5_hash = hashlib.md5()
with open(input_file, 'rb') as fi:
md5_hash.update(fi.read())
return md5_hash.hexdigest().upper()
|