import re from collections import OrderedDict from html import escape from pathlib import Path import dateparser import grobid_tei_xml from bs4 import BeautifulSoup from tqdm import tqdm def get_span_start(type, title=None): title_ = ' title="' + title + '"' if title is not None else "" return '' def get_span_end(): return '' def get_rs_start(type): return '' def get_rs_end(): return '' def has_space_between_value_and_unit(quantity): return quantity['offsetEnd'] < quantity['rawUnit']['offsetStart'] def decorate_text_with_annotations(text, spans, tag="span"): """ Decorate a text using spans, using two style defined by the tag: - "span" generated HTML like annotated text - "rs" generate XML like annotated text (format SuperMat) """ sorted_spans = list(sorted(spans, key=lambda item: item['offset_start'])) annotated_text = "" start = 0 for span in sorted_spans: type = span['type'].replace("<", "").replace(">", "") if 'unit_type' in span and span['unit_type'] is not None: type = span['unit_type'].replace(" ", "_") annotated_text += escape(text[start: span['offset_start']]) title = span['quantified'] if 'quantified' in span else None annotated_text += get_span_start(type, title) if tag == "span" else get_rs_start(type) annotated_text += escape(text[span['offset_start']: span['offset_end']]) annotated_text += get_span_end() if tag == "span" else get_rs_end() start = span['offset_end'] annotated_text += escape(text[start: len(text)]) return annotated_text def extract_quantities(client, x_all, column_text_index): # relevant_items = ['magnetic field strength', 'magnetic induction', 'maximum energy product', # "magnetic flux density", "magnetic flux"] # property_keywords = ['coercivity', 'remanence'] output_data = [] for idx, example in tqdm(enumerate(x_all), desc="extract quantities"): text = example[column_text_index] spans = GrobidQuantitiesProcessor(client).extract_quantities(text) data_record = { "id": example[0], "filename": example[1], "passage_id": example[2], "text": text, "spans": spans } output_data.append(data_record) return output_data def extract_materials(client, x_all, column_text_index): output_data = [] for idx, example in tqdm(enumerate(x_all), desc="extract materials"): text = example[column_text_index] spans = GrobidMaterialsProcessor(client).extract_materials(text) data_record = { "id": example[0], "filename": example[1], "passage_id": example[2], "text": text, "spans": spans } output_data.append(data_record) return output_data def get_parsed_value_type(quantity): if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']: return quantity['parsedValue']['structure']['type'] class BaseProcessor(object): # def __init__(self, grobid_superconductors_client=None, grobid_quantities_client=None): # self.grobid_superconductors_client = grobid_superconductors_client # self.grobid_quantities_client = grobid_quantities_client patterns = [ r'\d+e\d+' ] def post_process(self, text): output = text.replace('À', '-') output = output.replace('¼', '=') output = output.replace('þ', '+') output = output.replace('Â', 'x') output = output.replace('$', '~') output = output.replace('−', '-') output = output.replace('–', '-') for pattern in self.patterns: output = re.sub(pattern, lambda match: match.group().replace('e', '-'), output) return output class GrobidProcessor(BaseProcessor): def __init__(self, grobid_client): # super().__init__() self.grobid_client = grobid_client def process_structure(self, input_path, coordinates=False): pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument", input_path, consolidate_header=True, consolidate_citations=False, segment_sentences=True, tei_coordinates=coordinates, include_raw_citations=False, include_raw_affiliations=False, generateIDs=True) if status != 200: return output_data = self.parse_grobid_xml(text, coordinates=coordinates) output_data['filename'] = Path(pdf_file).stem.replace(".tei", "") return output_data def process_single(self, input_file): doc = self.process_structure(input_file) for paragraph in doc['passages']: entities = self.process_single_text(paragraph['text']) paragraph['spans'] = entities return doc def parse_grobid_xml(self, text, coordinates=False): output_data = OrderedDict() doc_biblio = grobid_tei_xml.parse_document_xml(text) biblio = { "doi": doc_biblio.header.doi if doc_biblio.header.doi is not None else "", "authors": ", ".join([author.full_name for author in doc_biblio.header.authors]), "title": doc_biblio.header.title, "hash": doc_biblio.pdf_md5 } try: year = dateparser.parse(doc_biblio.header.date).year biblio["publication_year"] = year except: pass output_data['biblio'] = biblio passages = [] output_data['passages'] = passages # if biblio['title'] is not None and len(biblio['title']) > 0: # passages.append({ # "text": self.post_process(biblio['title']), # "type": "paragraph", # "section": "
", # "subSection": "", # "passage_id": "title0" # }) passage_type = "sentence" if coordinates else "paragraph" if doc_biblio.abstract is not None and len(doc_biblio.abstract) > 0: passages.append({ "text": self.post_process(doc_biblio.abstract), "type": passage_type, "section": "<header>", "subSection": "<abstract>", "passage_id": "abstract0", "coordinates": "" }) soup = BeautifulSoup(text, 'xml') text_blocks_body = get_children_body(soup, verbose=False, use_paragraphs=False) passages.extend([ { "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if text.parent.name != "ref" or ( text.parent.name == "ref" and text.parent.attrs[ 'type'] != 'bibr'))), "type": passage_type, "section": "<body>", "subSection": "<sentence>", "passage_id": str(paragraph_id) + str(sentence_id), # "coordinates": sentence['coords'].split(";") if coordinates else [] "coordinates": sentence['coords'] if coordinates else "" } for paragraph_id, paragraph in enumerate(text_blocks_body) for sentence_id, sentence in enumerate(paragraph) ]) text_blocks_figures = get_children_figures(soup, verbose=False) passages.extend([ { "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if text.parent.name != "ref" or ( text.parent.name == "ref" and text.parent.attrs[ 'type'] != 'bibr'))), "type": passage_type, "section": "<body>", "subSection": "<figure>", "passage_id": str(paragraph_id) + str(sentence_id), "coordinates": sentence['coords'] if coordinates and 'coords' in sentence else "" } for paragraph_id, paragraph in enumerate(text_blocks_figures) for sentence_id, sentence in enumerate(paragraph) ]) return output_data class GrobidQuantitiesProcessor(BaseProcessor): def __init__(self, grobid_quantities_client): self.grobid_quantities_client = grobid_quantities_client def extract_quantities(self, text): status, result = self.grobid_quantities_client.process_text(text.strip()) if status != 200: result = {} spans = [] if 'measurements' in result: found_measurements = self.parse_measurements_output(result) for m in found_measurements: item = { "text": text[m['offset_start']:m['offset_end']], 'offset_start': m['offset_start'], 'offset_end': m['offset_end'] } if 'raw' in m and m['raw'] != item['text']: item['text'] = m['raw'] if 'quantified_substance' in m: item['quantified'] = m['quantified_substance'] if 'type' in m: item["unit_type"] = m['type'] item['type'] = 'property' # if 'raw_value' in m: # item['raw_value'] = m['raw_value'] spans.append(item) return spans @staticmethod def parse_measurements_output(result): measurements_output = [] for measurement in result['measurements']: type = measurement['type'] measurement_output_object = {} quantity_type = None has_unit = False parsed_value_type = None if 'quantified' in measurement: if 'normalizedName' in measurement['quantified']: quantified_substance = measurement['quantified']['normalizedName'] measurement_output_object["quantified_substance"] = quantified_substance if 'measurementOffsets' in measurement: measurement_output_object["offset_start"] = measurement["measurementOffsets"]['start'] measurement_output_object["offset_end"] = measurement["measurementOffsets"]['end'] else: # If there are no offsets we skip the measurement continue # if 'measurementRaw' in measurement: # measurement_output_object['raw_value'] = measurement['measurementRaw'] if type == 'value': quantity = measurement['quantity'] parsed_value = GrobidQuantitiesProcessor.get_parsed(quantity) if parsed_value: measurement_output_object['parsed'] = parsed_value normalized_value = GrobidQuantitiesProcessor.get_normalized(quantity) if normalized_value: measurement_output_object['normalized'] = normalized_value raw_value = GrobidQuantitiesProcessor.get_raw(quantity) if raw_value: measurement_output_object['raw'] = raw_value if 'type' in quantity: quantity_type = quantity['type'] if 'rawUnit' in quantity: has_unit = True parsed_value_type = get_parsed_value_type(quantity) elif type == 'interval': if 'quantityMost' in measurement: quantityMost = measurement['quantityMost'] if 'type' in quantityMost: quantity_type = quantityMost['type'] if 'rawUnit' in quantityMost: has_unit = True parsed_value_type = get_parsed_value_type(quantityMost) if 'quantityLeast' in measurement: quantityLeast = measurement['quantityLeast'] if 'type' in quantityLeast: quantity_type = quantityLeast['type'] if 'rawUnit' in quantityLeast: has_unit = True parsed_value_type = get_parsed_value_type(quantityLeast) elif type == 'listc': quantities = measurement['quantities'] if 'type' in quantities[0]: quantity_type = quantities[0]['type'] if 'rawUnit' in quantities[0]: has_unit = True parsed_value_type = get_parsed_value_type(quantities[0]) if quantity_type is not None or has_unit: measurement_output_object['type'] = quantity_type if parsed_value_type is None or parsed_value_type not in ['ALPHABETIC', 'TIME']: measurements_output.append(measurement_output_object) return measurements_output @staticmethod def get_parsed(quantity): parsed_value = parsed_unit = None if 'parsedValue' in quantity and 'parsed' in quantity['parsedValue']: parsed_value = quantity['parsedValue']['parsed'] if 'parsedUnit' in quantity and 'name' in quantity['parsedUnit']: parsed_unit = quantity['parsedUnit']['name'] if parsed_value and parsed_unit: if has_space_between_value_and_unit(quantity): return str(parsed_value) + str(parsed_unit) else: return str(parsed_value) + " " + str(parsed_unit) @staticmethod def get_normalized(quantity): normalized_value = normalized_unit = None if 'normalizedQuantity' in quantity: normalized_value = quantity['normalizedQuantity'] if 'normalizedUnit' in quantity and 'name' in quantity['normalizedUnit']: normalized_unit = quantity['normalizedUnit']['name'] if normalized_value and normalized_unit: if has_space_between_value_and_unit(quantity): return str(normalized_value) + " " + str(normalized_unit) else: return str(normalized_value) + str(normalized_unit) @staticmethod def get_raw(quantity): raw_value = raw_unit = None if 'rawValue' in quantity: raw_value = quantity['rawValue'] if 'rawUnit' in quantity and 'name' in quantity['rawUnit']: raw_unit = quantity['rawUnit']['name'] if raw_value and raw_unit: if has_space_between_value_and_unit(quantity): return str(raw_value) + " " + str(raw_unit) else: return str(raw_value) + str(raw_unit) class GrobidMaterialsProcessor(BaseProcessor): def __init__(self, grobid_superconductors_client): self.grobid_superconductors_client = grobid_superconductors_client def extract_materials(self, text): preprocessed_text = text.strip() status, result = self.grobid_superconductors_client.process_text(preprocessed_text, "processText_disable_linking") if status != 200: result = {} spans = [] if 'passages' in result: materials = self.parse_superconductors_output(result, preprocessed_text) for m in materials: item = {"text": preprocessed_text[m['offset_start']:m['offset_end']]} item['offset_start'] = m['offset_start'] item['offset_end'] = m['offset_end'] if 'formula' in m: item["formula"] = m['formula'] item['type'] = 'material' item['raw_value'] = m['text'] spans.append(item) return spans def parse_materials(self, text): status, result = self.grobid_superconductors_client.process_texts(text.strip(), "parseMaterials") if status != 200: result = [] results = [] for position_material in result: compositions = [] for material in position_material: if 'resolvedFormulas' in material: for resolved_formula in material['resolvedFormulas']: if 'formulaComposition' in resolved_formula: compositions.append(resolved_formula['formulaComposition']) elif 'formula' in material: if 'formulaComposition' in material['formula']: compositions.append(material['formula']['formulaComposition']) results.append(compositions) return results def parse_material(self, text): status, result = self.grobid_superconductors_client.process_text(text.strip(), "parseMaterial") if status != 200: result = [] compositions = self.output_info(result) return compositions def output_info(self, result): compositions = [] for material in result: if 'resolvedFormulas' in material: for resolved_formula in material['resolvedFormulas']: if 'formulaComposition' in resolved_formula: compositions.append(resolved_formula['formulaComposition']) elif 'formula' in material: if 'formulaComposition' in material['formula']: compositions.append(material['formula']['formulaComposition']) if 'name' in material: compositions.append(material['name']) return compositions @staticmethod def parse_superconductors_output(result, original_text): materials = [] for passage in result['passages']: sentence_offset = original_text.index(passage['text']) if 'spans' in passage: spans = passage['spans'] for material_span in filter(lambda s: s['type'] == '<material>', spans): text_ = material_span['text'] base_material_information = { "text": text_, "offset_start": sentence_offset + material_span['offset_start'], 'offset_end': sentence_offset + material_span['offset_end'] } materials.append(base_material_information) return materials class GrobidAggregationProcessor(GrobidProcessor, GrobidQuantitiesProcessor, GrobidMaterialsProcessor): def __init__(self, grobid_client, grobid_quantities_client=None, grobid_superconductors_client=None): GrobidProcessor.__init__(self, grobid_client) self.gqp = GrobidQuantitiesProcessor(grobid_quantities_client) self.gmp = GrobidMaterialsProcessor(grobid_superconductors_client) def process_single_text(self, text): extracted_quantities_spans = self.gqp.extract_quantities(text) extracted_materials_spans = self.gmp.extract_materials(text) all_entities = extracted_quantities_spans + extracted_materials_spans entities = self.prune_overlapping_annotations(all_entities) return entities def extract_quantities(self, text): return self.gqp.extract_quantities(text) def extract_materials(self, text): return self.gmp.extract_materials(text) @staticmethod def prune_overlapping_annotations(entities: list) -> list: # Sorting by offsets sorted_entities = sorted(entities, key=lambda d: d['offset_start']) if len(entities) <= 1: return sorted_entities to_be_removed = [] previous = None first = True for current in sorted_entities: if first: first = False previous = current continue if previous['offset_start'] < current['offset_start'] \ and previous['offset_end'] < current['offset_end'] \ and (previous['offset_end'] < current['offset_start'] \ and not (previous['text'] == "-" and current['text'][0].isdigit())): previous = current continue if previous['offset_end'] < current['offset_end']: if current['type'] == previous['type']: # Type is the same if current['offset_start'] == previous['offset_end']: if current['type'] == 'property': if current['text'].startswith("."): print( f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>") # current entity starts with a ".", suspiciously look like a truncated value to_be_removed.append(previous) current['text'] = previous['text'] + current['text'] current['raw_value'] = current['text'] current['offset_start'] = previous['offset_start'] elif previous['text'].endswith(".") and current['text'][0].isdigit(): print( f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>") # previous entity ends with ".", current entity starts with a number to_be_removed.append(previous) current['text'] = previous['text'] + current['text'] current['raw_value'] = current['text'] current['offset_start'] = previous['offset_start'] elif previous['text'].startswith("-"): print( f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>") # previous starts with a `-`, sherlock this is another truncated value current['text'] = previous['text'] + current['text'] current['raw_value'] = current['text'] current['offset_start'] = previous['offset_start'] to_be_removed.append(previous) else: print("Other cases to be considered: ", previous, current) else: if current['text'].startswith("-"): print( f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>") # previous starts with a `-`, sherlock this is another truncated value current['text'] = previous['text'] + current['text'] current['raw_value'] = current['text'] current['offset_start'] = previous['offset_start'] to_be_removed.append(previous) else: print("Other cases to be considered: ", previous, current) elif previous['text'] == "-" and current['text'][0].isdigit(): print( f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>") # previous starts with a `-`, sherlock this is another truncated value current['text'] = previous['text'] + " " * (current['offset_start'] - previous['offset_end']) + \ current['text'] current['raw_value'] = current['text'] current['offset_start'] = previous['offset_start'] to_be_removed.append(previous) else: print( f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>") # take the largest one if len(previous['text']) > len(current['text']): to_be_removed.append(current) elif len(previous['text']) < len(current['text']): to_be_removed.append(previous) else: to_be_removed.append(previous) elif current['type'] != previous['type']: print( f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>") if len(previous['text']) > len(current['text']): to_be_removed.append(current) elif len(previous['text']) < len(current['text']): to_be_removed.append(previous) else: if current['type'] == "material": to_be_removed.append(previous) else: to_be_removed.append(current) previous = current elif previous['offset_end'] > current['offset_end']: to_be_removed.append(current) # the previous goes after the current, so we keep the previous and we discard the current else: if current['type'] == "material": to_be_removed.append(previous) else: to_be_removed.append(current) previous = current new_sorted_entities = [e for e in sorted_entities if e not in to_be_removed] return new_sorted_entities class XmlProcessor(BaseProcessor): def __init__(self, grobid_superconductors_client, grobid_quantities_client): super().__init__(grobid_superconductors_client, grobid_quantities_client) def process_structure(self, input_file): text = "" with open(input_file, encoding='utf-8') as fi: text = fi.read() output_data = self.parse_xml(text) output_data['filename'] = Path(input_file).stem.replace(".tei", "") return output_data def process_single(self, input_file): doc = self.process_structure(input_file) for paragraph in doc['passages']: entities = self.process_single_text(paragraph['text']) paragraph['spans'] = entities return doc def parse_xml(self, text): output_data = OrderedDict() soup = BeautifulSoup(text, 'xml') text_blocks_children = get_children_list_supermat(soup, verbose=False) passages = [] output_data['passages'] = passages passages.extend([ { "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if text.parent.name != "ref" or ( text.parent.name == "ref" and text.parent.attrs[ 'type'] != 'bibr'))), "type": "paragraph", "section": "<body>", "subSection": "<paragraph>", "passage_id": str(paragraph_id) + str(sentence_id) } for paragraph_id, paragraph in enumerate(text_blocks_children) for sentence_id, sentence in enumerate(paragraph) ]) return output_data def get_children_list_supermat(soup, use_paragraphs=False, verbose=False): children = [] child_name = "p" if use_paragraphs else "s" for child in soup.tei.children: if child.name == 'teiHeader': pass children.append(child.find_all("title")) children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")]) children.extend([subchild.find_all(child_name) for subchild in child.find_all("ab", {"type": "keywords"})]) elif child.name == 'text': children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")]) if verbose: print(str(children)) return children def get_children_list_grobid(soup: object, use_paragraphs: object = True, verbose: object = False) -> object: children = [] child_name = "p" if use_paragraphs else "s" for child in soup.TEI.children: if child.name == 'teiHeader': pass # children.extend(child.find_all("title", attrs={"level": "a"}, limit=1)) # children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")]) elif child.name == 'text': children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")]) children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")]) if verbose: print(str(children)) return children def get_children_body(soup: object, use_paragraphs: object = True, verbose: object = False) -> object: children = [] child_name = "p" if use_paragraphs else "s" for child in soup.TEI.children: if child.name == 'text': children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")]) if verbose: print(str(children)) return children def get_children_figures(soup: object, use_paragraphs: object = True, verbose: object = False) -> object: children = [] child_name = "p" if use_paragraphs else "s" for child in soup.TEI.children: if child.name == 'text': children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")]) if verbose: print(str(children)) return children