Spaces:
Sleeping
Sleeping
File size: 11,300 Bytes
f6bfed1 de1b677 f6bfed1 c8fe9c4 f6bfed1 c8fe9c4 f6bfed1 c8fe9c4 f6bfed1 c8fe9c4 f6bfed1 2d2c11b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# this is the configuration file for the GROBID instance
grobid:
# where all the Grobid resources are stored (models, lexicon, native libraries, etc.), normally no need to change
grobidHome: "grobid-home"
# path relative to the grobid-home path (e.g. tmp for grobid-home/tmp) or absolute path (/tmp)
temp: "tmp"
# normally nothing to change here, path relative to the grobid-home path (e.g. grobid-home/lib)
nativelibrary: "lib"
pdf:
pdfalto:
# path relative to the grobid-home path (e.g. grobid-home/pdfalto), you don't want to change this normally
path: "pdfalto"
# security for PDF parsing
memoryLimitMb: 6096
timeoutSec: 120
# security relative to the PDF parsing result
blocksMax: 200000
tokensMax: 1000000
consolidation:
# define the bibliographical data consolidation service to be used, either "crossref" for CrossRef REST API or
# "glutton" for https://github.com/kermitt2/biblio-glutton
service: "crossref"
#service: "glutton"
glutton:
url: "https://cloud.science-miner.com/glutton"
#url: "http://localhost:8080"
crossref:
mailto:
# to use crossref web API, you need normally to use it politely and to indicate an email address here, e.g.
#mailto: "toto@titi.tutu"
token:
# to use Crossref metadata plus service (available by subscription)
#token: "yourmysteriouscrossrefmetadataplusauthorizationtokentobeputhere"
proxy:
# proxy to be used when doing external call to the consolidation service
host:
port:
# CORS configuration for the GROBID web API service
corsAllowedOrigins: "*"
corsAllowedMethods: "OPTIONS,GET,PUT,POST,DELETE,HEAD"
corsAllowedHeaders: "X-Requested-With,Content-Type,Accept,Origin"
# the actual implementation for language recognition to be used
languageDetectorFactory: "org.grobid.core.lang.impl.CybozuLanguageDetectorFactory"
# the actual implementation for optional sentence segmentation to be used (PragmaticSegmenter or OpenNLP)
sentenceDetectorFactory: "org.grobid.core.lang.impl.PragmaticSentenceDetectorFactory"
# sentenceDetectorFactory: "org.grobid.core.lang.impl.OpenNLPSentenceDetectorFactory"
# maximum concurrency allowed to GROBID server for processing parallel requests - change it according to your CPU/GPU capacities
# for a production server running only GROBID, set the value slightly above the available number of threads of the server
# to get best performance and security
concurrency: 10
# when the pool is full, for queries waiting for the availability of a Grobid engine, this is the maximum time wait to try
# to get an engine (in seconds) - normally never change it
poolMaxWait: 1
delft:
# DeLFT global parameters
# delft installation path if Deep Learning architectures are used to implement one of the sequence labeling model,
# embeddings are usually compiled as lmdb under delft/data (this parameter is ignored if only featured-engineered CRF are used)
install: "../delft"
pythonVirtualEnv:
wapiti:
# Wapiti global parameters
# number of threads for training the wapiti models (0 to use all available processors)
nbThreads: 0
models:
# we configure here how each sequence labeling model should be implemented
# for feature-engineered CRF, use "wapiti" and possible training parameters are window, epsilon and nbMaxIterations
# for Deep Learning, use "delft" and select the target DL architecture (see DeLFT library), the training
# parameters then depends on this selected DL architecture
- name: "segmentation"
# at this time, must always be CRF wapiti, the input sequence size is too large for a Deep Learning implementation
engine: "wapiti"
#engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.0000001
window: 50
nbMaxIterations: 2000
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
useELMo: false
runtime:
# parameters used at runtime/prediction
max_sequence_length: 3000
batch_size: 1
training:
# parameters used for training
max_sequence_length: 3000
batch_size: 10
- name: "fulltext"
# at this time, must always be CRF wapiti, the input sequence size is too large for a Deep Learning implementation
engine: "wapiti"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.0001
window: 20
nbMaxIterations: 1500
- name: "header"
#engine: "wapiti"
engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.000001
window: 30
nbMaxIterations: 1500
delft:
# deep learning parameters
architecture: "BidLSTM_ChainCRF_FEATURES"
#transformer: "allenai/scibert_scivocab_cased"
useELMo: false
runtime:
# parameters used at runtime/prediction
#max_sequence_length: 510
max_sequence_length: 3000
batch_size: 1
training:
# parameters used for training
#max_sequence_length: 510
#batch_size: 6
max_sequence_length: 3000
batch_size: 9
- name: "reference-segmenter"
#engine: "wapiti"
engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.00001
window: 20
delft:
# deep learning parameters
architecture: "BidLSTM_ChainCRF_FEATURES"
useELMo: false
runtime:
# parameters used at runtime/prediction (for this model, use same max_sequence_length as training)
max_sequence_length: 3000
batch_size: 2
training:
# parameters used for training
max_sequence_length: 3000
batch_size: 10
- name: "name-header"
engine: "wapiti"
#engine: "delft"
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
- name: "name-citation"
engine: "wapiti"
#engine: "delft"
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
- name: "date"
engine: "wapiti"
#engine: "delft"
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
- name: "figure"
engine: "wapiti"
#engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.00001
window: 20
delft:
# deep learning parameters
architecture: "BidLSTM_CRF"
- name: "table"
engine: "wapiti"
#engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.00001
window: 20
delft:
# deep learning parameters
architecture: "BidLSTM_CRF"
- name: "affiliation-address"
#engine: "wapiti"
engine: "delft"
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
- name: "citation"
#engine: "wapiti"
engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.00001
window: 50
nbMaxIterations: 3000
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
#architecture: "BERT_CRF"
#transformer: "michiyasunaga/LinkBERT-base"
useELMo: false
runtime:
# parameters used at runtime/prediction
max_sequence_length: 500
batch_size: 30
training:
# parameters used for training
max_sequence_length: 500
batch_size: 50
- name: "patent-citation"
engine: "wapiti"
#engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.0001
window: 20
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
#architecture: "BERT_CRF"
runtime:
# parameters used at runtime/prediction
max_sequence_length: 800
batch_size: 20
training:
# parameters used for training
max_sequence_length: 1000
batch_size: 40
- name: "funding-acknowledgement"
engine: "wapiti"
#engine: "delft"
wapiti:
# wapiti training parameters, they will be used at training time only
epsilon: 0.00001
window: 50
nbMaxIterations: 2000
delft:
# deep learning parameters
architecture: "BidLSTM_CRF_FEATURES"
#architecture: "BERT_CRF"
#transformer: "michiyasunaga/LinkBERT-base"
useELMo: false
runtime:
# parameters used at runtime/prediction
max_sequence_length: 800
batch_size: 20
training:
# parameters used for training
max_sequence_length: 500
batch_size: 40
- name: "copyright"
# at this time, we only have a DeLFT implementation,
# use "wapiti" if the deep learning library JNI is not available and model will then be ignored
#engine: "delft"
engine: "wapiti"
delft:
# deep learning parameters
architecture: "gru"
#architecture: "bert"
#transformer: "allenai/scibert_scivocab_cased"
- name: "license"
# at this time, for being active, it must be DeLFT, no other implementation is available
# use "wapiti" if the deep learning library JNI is not available and model will then be ignored
#engine: "delft"
engine: "wapiti"
delft:
# deep learning parameters
architecture: "gru"
#architecture: "bert"
#transformer: "allenai/scibert_scivocab_cased"
# for **service only**: how to load the models,
# false -> models are loaded when needed, avoiding putting in memory useless models (only in case of CRF) but slow down
# significantly the service at first call
# true -> all the models are loaded into memory at the server startup (default), slow the start of the services
# and models not used will take some more memory (only in case of CRF), but server is immediatly warm and ready
modelPreload: true
server:
type: custom
applicationConnectors:
- type: http
port: 8070
adminConnectors:
- type: http
port: 8071
registerDefaultExceptionMappers: false
# change the following for having all http requests logged
requestLog:
appenders: []
# these logging settings apply to the Grobid service usage mode
logging:
level: INFO
loggers:
org.apache.pdfbox.pdmodel.font.PDSimpleFont: "OFF"
org.glassfish.jersey.internal: "OFF"
com.squarespace.jersey2.guice.JerseyGuiceUtils: "OFF"
appenders:
- type: console
threshold: INFO
timeZone: UTC
# uncomment to have the logs in json format
# layout:
# type: json
|