import ast import glob from itertools import islice from functools import partial from typing import Optional, Type import gradio as gr import nltk import pandas as pd from datatrove.data import Document from datatrove.executor.local import LocalPipelineExecutor from datatrove.pipeline.extractors import Trafilatura from datatrove.pipeline.filters.base_filter import BaseFilter from datatrove.pipeline.filters import ( C4QualityFilter, FineWebQualityFilter, GopherQualityFilter, GopherRepetitionFilter, LanguageFilter, URLFilter, ) from datatrove.pipeline.formatters import PIIFormatter from datatrove.pipeline.readers import JsonlReader, WarcReader from datatrove.utils.typeshelper import Languages nltk.download('punkt_tab') DUMP_TO_PROCESS = "CC-MAIN-2023-50" make_gallery_image_buttons_js = """ function load() { class ClassWatcher { constructor(targetNode, classToWatch, classAddedCallback, arg) { this.targetNode = targetNode this.classToWatch = classToWatch this.classAddedCallback = classAddedCallback this.arg = arg this.observer = null this.lastClassState = targetNode.classList.contains(this.classToWatch) this.init() } init() { this.observer = new MutationObserver(this.mutationCallback) this.observe() } observe() { this.observer.observe(this.targetNode, { attributes: true }) } disconnect() { this.observer.disconnect() } mutationCallback = mutationsList => { for (let mutation of mutationsList) { if (mutation.type === 'attributes' && mutation.attributeName === 'class') { let currentClassState = mutation.target.classList.contains(this.classToWatch) if(this.lastClassState !== currentClassState) { this.lastClassState = currentClassState if(currentClassState) { this.classAddedCallback(this.arg) } } } } } } let buttons = document.getElementsByClassName("block-button"); function clickButton(i) { buttons[i].click(); } Array.from(document.getElementById("pipeline-gallery").getElementsByClassName("thumbnail-item")).map( (b, i) => new ClassWatcher(b, 'selected', clickButton, i) ) } """ css = """ tr td { border-top: 1px solid black; } .grid-container { gap: 0; grid-template-rows: auto; grid-auto-rows: auto; } .thumbnail-item { aspect-ratio: auto; height: min-content; } .grid-wrap { min-height: 0; } """ blocks = sorted(glob.glob("images/*.png")) def prepare_as_list_or_none(text: str) -> Optional[list[str]]: return ([x.strip() for x in text.split(",") if x.strip()] or None) if text else None def non_empty_list_or_none(input_list: list[str]) -> Optional[list[str]]: return input_list or None def build_code_snippet(steps, params=None): # TODO return ( "```python\n" "TODO\n" "```" ) with gr.Blocks(css=css, js=make_gallery_image_buttons_js) as demo: state = gr.State({"selected_block": 0}) gr.Markdown("# Common Crawl Pipeline Creator") gallery = gr.Gallery( blocks, columns=4, rows=2, label="Select step to edit", object_fit="scale-down", show_share_button=False, show_download_button=False, show_fullscreen_button=False, elem_id="pipeline-gallery", allow_preview=False, ) gallery_image_buttons = [gr.Button(visible=False, elem_classes="block-button") for _ in blocks] # hack to simulate each image galery as a button, see `make_gallery_image_buttons_js`` blocks_uis = [] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 1. URL Filtering \n\nPerforms filtering based on samples urls.") with gr.Group(): url_filtering_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion("Parameters", open=True) as acc: use_integrated_lists_checkbox = gr.Checkbox(True, label="use_integrated_lists", info="use the datatrove integrated lists of banned urls and words") with gr.Row(): with gr.Column(): extra_domain_textbox = gr.Textbox("", label="extra_domains", info="remove if the domain is present in `extra_domains`") extra_domain_textbox.prepare_parameter = prepare_as_list_or_none extra_urls_textbox = gr.Textbox("", label="extra_urls", info="remove if the full url is present on `extra_urls`") extra_urls_textbox.prepare_parameter = prepare_as_list_or_none with gr.Column(): banned_words_textbox = gr.Textbox("", label="banned_words", info="remove if any word from `banned_words` is in the url") banned_words_textbox.prepare_parameter = prepare_as_list_or_none banned_subwords_textbox = gr.Textbox("", label="banned_subwords", info="remove if any word from `banned_subwords` is a substring of the url") banned_subwords_textbox.prepare_parameter = prepare_as_list_or_none with gr.Column(): soft_banned_words_textbox = gr.Textbox("", label="soft_banned_words", info="remove if there are at least `soft_word_threshold` words from `soft_banned_words` in the url") soft_banned_words_textbox.prepare_parameter = prepare_as_list_or_none soft_word_threshold_slider = gr.Slider(0, 5, value=2, step=1, label="soft_word_threshold", info="remove if there are at least `soft_word_threshold` words from `soft_banned_words` in the url") url_filtering_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=url_filtering_checkbox, outputs=acc) url_filtering_parameters_components = [use_integrated_lists_checkbox, extra_domain_textbox, extra_urls_textbox, banned_words_textbox, banned_subwords_textbox, soft_banned_words_textbox, soft_word_threshold_slider] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 2. Text Extraction \n\nUses the [Trafilatura](https://trafilatura.readthedocs.io) extractor.") with gr.Group(): text_extraction_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion("Parameters", open=True) as acc: with gr.Row(): favour_precision_checkbox = gr.Checkbox(True, label="favour_precision", info="prefer less text but correct extraction") timeout_slider = gr.Slider(0.05, 0.5, value=0.1, step=0.05, label="timeout", info="the timeout for extraction, per document, in seconds") deduplicate_checkbox = gr.Checkbox(True, label="deduplicate", info="trafilatura's deduplicate option") text_extraction_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=text_extraction_checkbox, outputs=acc) text_extraction_parameters_components = [favour_precision_checkbox, timeout_slider, deduplicate_checkbox] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 3. Language Filtering \n\nUses the [fastext](https://fasttext.cc/docs/en/language-identification.html) language identification models.") with gr.Group(): language_filtering_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion("Parameters", open=True) as acc: with gr.Row(): languages_textbox = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), multiselect=True, label="languages", info="list of languages to keep. empty for all") languages_textbox.prepare_parameter = non_empty_list_or_none language_threshold_slider = gr.Slider(0, 1, value=0.65, step=0.05, label="language_threshold", info="minimum score to accept a document") language_filtering_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=language_filtering_checkbox, outputs=acc) language_filtering_parameters_components = [languages_textbox, language_threshold_slider] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 4. Gopher Filtering (repetitions) \n\nUses the [Gopher](https://huggingface.co/papers/2112.11446) text repetition filters.") with gr.Group(): gopher_filtering_repetitions_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion("Parameters", open=True) as acc: with gr.Group(): with gr.Row(): language_dropdown1 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language") top_n_grams_textbox = gr.Textbox("(2, 0.2), (3, 0.18), (4, 0.16)", label="top_n_grams") top_n_grams_textbox.prepare_parameter = ast.literal_eval dup_n_grams_textbox = gr.Textbox("(5, 0.15), (6, 0.14), (7, 0.13), (8, 0.12), (9, 0.11), (10, 0.10)", label="dup_n_grams") dup_n_grams_textbox.prepare_parameter = ast.literal_eval with gr.Row(): dup_line_frac_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="dup_line_frac") dup_para_frac_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="dup_para_frac") dup_line_char_frac_slider = gr.Slider(0, 1, value=0.2, step=0.05, label="dup_line_char_frac") dup_para_char_frac_slider = gr.Slider(0, 1, value=0.2, step=0.05, label="dup_para_char_frac") gopher_filtering_repetitions_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=gopher_filtering_repetitions_checkbox, outputs=acc) gopher_filtering_repetitions_parameters_components = [language_dropdown1, top_n_grams_textbox, dup_n_grams_textbox, dup_line_frac_slider, dup_para_frac_slider, dup_line_char_frac_slider, dup_para_char_frac_slider] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 8. PII Removal \n\nReplaces email addresses and ip addresses in the document text.") with gr.Group(): pii_removal_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion("Parameters", open=True) as acc: with gr.Row(): remove_emails_checkbox = gr.Checkbox(True, label="remove_emails", info="Replace email addresses") remove_ips_checkbox = gr.Checkbox(True, label="remove_ips", info="Replace IP addresses") only_remove_public_ips_checkbox = gr.Checkbox(True, label="only_remove_public_ips", info="by default we only replace public (and thus PII) IPs") with gr.Row(): email_replacement_textbox = gr.Textbox("email@example.com, firstname.lastname@example.org", label="email_replacement", info="strings to use as replacement. They will be used in a circular way") email_replacement_textbox.prepare_parameter = prepare_as_list_or_none ip_replacement_textbox = gr.Textbox("22.214.171.124, 126.96.36.199, 188.8.131.52, 184.108.40.206, 220.127.116.11, 18.104.22.168", label="ip_replacement", info="same as email_replacement but for IP addresses") ip_replacement_textbox.prepare_parameter = prepare_as_list_or_none pii_removal_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=pii_removal_checkbox, outputs=acc) pii_removal_parameters_components = [remove_emails_checkbox, remove_ips_checkbox, only_remove_public_ips_checkbox, email_replacement_textbox, ip_replacement_textbox] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 7. Custom Filters \n\nUses the [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) custom text filters.") with gr.Group(): custom_filters_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion("Parameters", open=True) as acc: with gr.Row(): line_punct_thr_slider = gr.Slider(0, 1, value=0.12, step=0.01, label="line_punct_thr") line_punct_exclude_zero = gr.Checkbox(False, label="line_punct_exclude_zero") short_line_thr_slider = gr.Slider(0, 1, value=0.67, step=0.01, label="short_line_thr") short_line_length_slider = gr.Slider(0, 100, value=30, step=1, label="short_line_length") char_duplicates_ratio_slider = gr.Slider(0, 1, value=0.01, step=0.01, label="char_duplicates_ratio") new_line_ratio_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="new_line_ratio") custom_filters_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=custom_filters_checkbox, outputs=acc) custom_filters_parameters_components = [line_punct_thr_slider, line_punct_exclude_zero, short_line_thr_slider, short_line_length_slider, char_duplicates_ratio_slider, new_line_ratio_slider] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 6. C4 Filters\n\nUses the [C4](https://huggingface.co/datasets/allenai/c4) text size and content filters.") with gr.Group(): c4_filters_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion(" Parameters", open=True) as acc: with gr.Group(): with gr.Row(): split_paragraph_checkbox = gr.Checkbox(True, label="split_paragraph", info="disable to apply the filters to each sentence instead of to each line") with gr.Row(): language_dropdown2 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language") min_num_sentences_slider = gr.Slider(0, 10, value=5, step=1, label="min_num_sentences", info="remove documents that do not have at least this number of sentences (after line filtering)") min_words_per_line_slider = gr.Slider(0, 10, value=3, step=1, label="min_words_per_line", info="drop lines without this min number of words") max_word_length_slider = gr.Slider(0, 2000, value=1000, step=10, label="max_word_length", info=" drop lines where at least one word has more than this number of characters") with gr.Row(): remove_citations_checkbox = gr.Checkbox(True, label="remove_citations", info="remove wikipedia style citations from the text") filter_no_terminal_punct_checkbox = gr.Checkbox(True, label="filter_no_terminal_punct", info="remove lines without terminal punctuation marks") filter_lorem_ipsum_checkbox = gr.Checkbox(True, label="filter_lorem_ipsum", info="drop documents that contain 'lorem ipsum'") filter_javascript_checkbox = gr.Checkbox(True, label="filter_javascript", info="drop lines mentioning 'javascript'") filter_curly_bracket = gr.Checkbox(True, label="filter_curly_bracket", info="drop documents containing {") filter_policy = gr.Checkbox(True, label="filter_policy", info="drop lines containing any of the policy phrases (e.g. 'terms of use', 'use cookies')") c4_filters_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=c4_filters_checkbox, outputs=acc) c4_filters_parameters_components = [split_paragraph_checkbox, language_dropdown2, min_num_sentences_slider, min_words_per_line_slider, max_word_length_slider, remove_citations_checkbox, filter_no_terminal_punct_checkbox, filter_lorem_ipsum_checkbox, filter_javascript_checkbox, filter_curly_bracket, filter_policy] with gr.Column(visible=False) as col: blocks_uis.append(col) gr.Markdown("## 5. Gopher Filtering (quality) \n\nUses the [Gopher](https://huggingface.co/papers/2112.11446) text quality filters.") with gr.Group(): gopher_filtering_quality_checkbox = gr.Checkbox(True, label="Enable") with gr.Accordion("Parameters", open=True) as acc: with gr.Group(): with gr.Row(): language_dropdown2 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language") min_doc_words_slider = gr.Slider(0, 1000, value=50, step=10, label="min_doc_words") max_doc_words_slider = gr.Slider(0, 200_000, value=100_000, step=10_000, label="max_doc_words") with gr.Row(): min_avg_word_length_slider = gr.Slider(0, 20, value=3, step=1, label="min_avg_word_length") max_avg_word_length_slider = gr.Slider(0, 20, value=10, step=1, label="max_avg_word_length") with gr.Row(): max_symbol_word_ratio_slider = gr.Slider(0, 1, value=0.1, step=0.05, label="max_symbol_word_ratio") max_bullet_lines_ratio_slider = gr.Slider(0, 1, value=0.9, step=0.05, label="max_bullet_lines_ratio") max_ellipsis_lines_ratio_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="max_ellipsis_lines_ratio") max_non_alpha_words_ratio_slider = gr.Slider(0, 1, value=0.8, step=0.05, label="max_non_alpha_words_ratio") with gr.Row(): min_stop_words_slider = gr.Slider(0, 10, value=2, step=1, label="min_stop_words") stop_words_textbox = gr.Textbox("the, be, to, of, and, that, have, with", label="stop_words") stop_words_textbox.prepare_parameter = prepare_as_list_or_none gopher_filtering_quality_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=gopher_filtering_quality_checkbox, outputs=acc) gopher_filtering_quality_parameters_components = [language_dropdown2, min_doc_words_slider, max_doc_words_slider, min_avg_word_length_slider, max_avg_word_length_slider, max_symbol_word_ratio_slider, max_bullet_lines_ratio_slider, max_ellipsis_lines_ratio_slider, max_non_alpha_words_ratio_slider, min_stop_words_slider, stop_words_textbox] with gr.Row(): view_pipeline_results_button = gr.Button("Run Pipeline & Stream Results", variant="primary", scale=4) stop_button = gr.Button("Stop") steps = [ URLFilter, Trafilatura, LanguageFilter, GopherRepetitionFilter, GopherQualityFilter, C4QualityFilter, FineWebQualityFilter, PIIFormatter ] steps_parameters_components = [ url_filtering_parameters_components, text_extraction_parameters_components, language_filtering_parameters_components, gopher_filtering_repetitions_parameters_components, gopher_filtering_quality_parameters_components, c4_filters_parameters_components, custom_filters_parameters_components, pii_removal_parameters_components ] with gr.Tab("Output") as output_tab: output_dataframe = gr.DataFrame(datatype="markdown") with gr.Tab("Excluded") as excluded_tab: excluded_dataframes: dict[Type, gr.DataFrame] = {} excluded_tabs: dict[Type, gr.Tab] = {} for step in steps: if issubclass(step, BaseFilter) and step is not URLFilter: with gr.Tab(step.__name__) as t: excluded_dataframes[step] = gr.DataFrame(datatype="markdown") excluded_tabs[step] = t with gr.Tab("Python code") as code_tab: python_code_markdown = gr.Markdown(build_code_snippet(steps)) gr.Markdown("_powered by [datatrove](https://github.com/huggingface/datatrove)_") def show_block_ui(i): return {**{block_ui: gr.Column(visible=(j == i)) for j, block_ui in enumerate(blocks_uis)}, state: {"selected_block": i}} for i, button in enumerate(gallery_image_buttons): button.click(partial(show_block_ui, i), outputs=blocks_uis + [state]) inputs = [ url_filtering_checkbox, text_extraction_checkbox, language_filtering_checkbox, gopher_filtering_repetitions_checkbox, gopher_filtering_quality_checkbox, c4_filters_checkbox, custom_filters_checkbox, pii_removal_checkbox ] + sum(steps_parameters_components, []) @view_pipeline_results_button.click(inputs=inputs, outputs=[output_tab, output_dataframe, excluded_tab] + list(excluded_dataframes.values()) + list(excluded_tabs.values())) def view_pipeline_results(*args): enable_steps, steps_parameters = args[:len(steps)], args[len(steps):] steps_parameters_iter = iter(steps_parameters) steps_parameters = [ { parameters_component.label: parameters_component.prepare_parameter(parameter) if hasattr(parameters_component, "prepare_parameter") else parameter for parameters_component, parameter in zip(step_parameters_components, steps_parameters_iter) } for step_parameters_components in steps_parameters_components ] default_steps_parameters = [ { parameters_component.label: parameters_component.prepare_parameter(parameters_component.value) if hasattr(parameters_component, "prepare_parameter") else parameters_component.value for parameters_component in step_parameters_components } for step_parameters_components in steps_parameters_components ] class ExclusionWriter: def __init__(self) -> None: self.docs: list[Document] = [] def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): return def write(self, doc, rank): self.docs.append(doc) steps_to_run = [ step(**step_parameters, **({"exclusion_writer": ExclusionWriter()} if step in excluded_dataframes else {})) for step, step_parameters, enable_step in zip(steps, steps_parameters, enable_steps) if enable_step ] output_docs: list[Document] = [] num_warc_samples = 0 def increment_num_warc_samples(data, rank, world_size, num_warc_samples_per_doc=1): nonlocal num_warc_samples for x in data: num_warc_samples += num_warc_samples_per_doc yield x if steps_parameters[:2] == default_steps_parameters[:2] and all(enable_steps[:2]): pipeline_executor = LocalPipelineExecutor( pipeline=[ JsonlReader(data_folder=f"output_text_extraction-full/base_processing/output/{DUMP_TO_PROCESS}", glob_pattern="*.jsonl.gz"), partial(increment_num_warc_samples, num_warc_samples_per_doc=2000 / 1687) ] + steps_to_run[2:] + [ lambda data, rank, world_size: islice(data, 100), lambda data, rank, world_size: map(output_docs.append, data) ], logging_dir="logs", skip_completed=False ) else: pipeline_executor = LocalPipelineExecutor( pipeline=[ WarcReader(data_folder="data", glob_pattern="*.warc.gz"), increment_num_warc_samples ] + steps_to_run + [ lambda data, rank, world_size: islice(data, 100), lambda data, rank, world_size: map(output_docs.append, data) ], logging_dir="logs", skip_completed=False ) from threading import Thread thread = Thread(target=pipeline_executor.run) thread.start() while thread.is_alive(): thread.join(timeout=1) if num_warc_samples: yield { output_tab: gr.Tab(f"Output (~{len(output_docs)/num_warc_samples*100:.03f}% of data)"), excluded_tab: gr.Tab(f"Excluded (~{100 - len(output_docs)/num_warc_samples*100:.03f}% of data)"), output_dataframe: pd.DataFrame({"text": [doc.text for doc in output_docs]}), **{ excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": [doc.text for doc in step_to_run.exclusion_writer.docs]}) for step_to_run in pipeline_executor.pipeline if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes }, **{ excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__} (~{len(step_to_run.exclusion_writer.docs)/num_warc_samples*100:.03f}% of data)") for step_to_run in pipeline_executor.pipeline if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes }, } else: yield { output_tab: gr.Tab("Output (loading...)"), excluded_tab: gr.Tab("Excluded (loading...)"), **{ excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": []}) for step_to_run in pipeline_executor.pipeline if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes }, **{ excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__}") for step_to_run in pipeline_executor.pipeline if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes }, } yield { output_tab: gr.Tab(f"Output (~{len(output_docs)/num_warc_samples*100:.03f}% of data)"), excluded_tab: gr.Tab(f"Excluded (~{100 - len(output_docs)/num_warc_samples*100:.03f}% of data)"), output_dataframe: pd.DataFrame({"text": [doc.text for doc in output_docs]}), **{ excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": [doc.text for doc in step_to_run.exclusion_writer.docs]}) for step_to_run in pipeline_executor.pipeline if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes }, **{ excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__} (~{len(step_to_run.exclusion_writer.docs)/num_warc_samples*100:.03f}% of data)") for step_to_run in pipeline_executor.pipeline if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes }, } stop_button.click(cancels=[view_pipeline_results]) if __name__ == "__main__": demo.launch()