Spaces:
Running
on
Zero
Running
on
Zero
from pathlib import Path | |
from urllib.parse import urlparse, parse_qs | |
import gradio as gr | |
import io | |
import pandas as pd | |
import spaces | |
from generate import model_id, stream_jsonl_file | |
MAX_SIZE = 20 | |
DEFAULT_SEED = 42 | |
DEFAULT_SIZE = 3 | |
def stream_output(query: str, continue_content: str = ""): | |
query = Path(query).name | |
parsed_filename = urlparse(query) | |
filename = parsed_filename.path | |
params = parse_qs(parsed_filename.query) | |
prompt = params["prompt"][0] if "prompt" in params else "" | |
columns = [column.strip() for column in params["columns"][0].split(",") if column.strip()] if "columns" in params else [] | |
size = int(params["size"][0]) if "size" in params else DEFAULT_SIZE | |
seed = int(params["seed"][0]) if "seed" in params else DEFAULT_SEED | |
if size > MAX_SIZE: | |
raise gr.Error(f"Maximum size is {MAX_SIZE}. Duplicate this Space to remove this limit.") | |
content = continue_content | |
df = pd.read_json(io.StringIO(content), lines=True, convert_dates=False) | |
continue_content_size = len(df) | |
state_msg = f"⚙️ Generating... [{continue_content_size + 1}/{continue_content_size + size}]" | |
if list(df.columns): | |
columns = list(df.columns) | |
else: | |
df = pd.DataFrame({"1": [], "2": [], "3": []}) | |
yield df, "```json\n" + content + "\n```", gr.Button(state_msg), gr.Button("Generate one more batch", interactive=False), gr.DownloadButton("⬇️ Download", interactive=False) | |
for i, chunk in enumerate(stream_jsonl_file( | |
filename=filename, | |
prompt=prompt, | |
columns=columns, | |
seed=seed + (continue_content_size // size), | |
size=size, | |
)): | |
content += chunk | |
df = pd.read_json(io.StringIO(content), lines=True, convert_dates=False) | |
state_msg = f"⚙️ Generating... [{continue_content_size + i + 1}/{continue_content_size + size}]" | |
yield df, "```json\n" + content + "\n```", gr.Button(state_msg), gr.Button("Generate one more batch", interactive=False), gr.DownloadButton("⬇️ Download", interactive=False) | |
with open(query, "w", encoding="utf-8") as f: | |
f.write(content) | |
yield df, "```json\n" + content + "\n```", gr.Button("Generate dataset"), gr.Button("Generate one more batch", visible=True, interactive=True), gr.DownloadButton("⬇️ Download", value=query, visible=True, interactive=True) | |
def stream_more_output(query: str): | |
query = Path(query).name | |
with open(query, "r", encoding="utf-8") as f: | |
continue_content = f.read() | |
yield from stream_output(query=query, continue_content=continue_content) | |
title = "LLM DataGen" | |
description = ( | |
f"Generate and stream synthetic dataset files in `{{JSON Lines}}` format (currently using [{model_id}](https://huggingface.co/{model_id}))\n\n" | |
"Disclaimer: LLM data generation is an area of active research with known problems such as biased generation and incorrect information." | |
) | |
examples = [ | |
"movies_data.jsonl", | |
"dungeon_and_dragon_characters.jsonl", | |
"bad_amazon_reviews_on_defunct_products_that_people_hate.jsonl", | |
"common_first_names.jsonl?columns=first_name,popularity&size=10", | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown(description) | |
filename_comp = gr.Textbox(examples[0], placeholder=examples[0], label="File name to generate") | |
outputs = [] | |
generate_button = gr.Button("Generate dataset") | |
with gr.Tab("Dataset"): | |
dataframe_comp = gr.DataFrame() | |
with gr.Tab("File content"): | |
file_content_comp = gr.Markdown() | |
with gr.Row(): | |
generate_more_button = gr.Button("Generate one more batch", visible=False, interactive=False, scale=3) | |
download_button = gr.DownloadButton("⬇️ Download", visible=False, interactive=False, scale=1) | |
outputs = [dataframe_comp, file_content_comp, generate_button, generate_more_button, download_button] | |
examples = gr.Examples(examples, filename_comp, outputs, fn=stream_output, run_on_click=True) | |
generate_button.click(stream_output, filename_comp, outputs) | |
generate_more_button.click(stream_more_output, filename_comp, outputs) | |
demo.launch() |