Spaces:
Running
on
Zero
Running
on
Zero
run on examples click
Browse files- generate.py +5 -1
- gradio_app.py +38 -19
generate.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
|
2 |
import json
|
3 |
import logging
|
|
|
4 |
import time
|
5 |
from pathlib import Path
|
6 |
from typing import Annotated, Iterator
|
@@ -33,8 +34,11 @@ else:
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
34 |
sampler = PenalizedMultinomialSampler()
|
35 |
low_temperature_sampler = PenalizedMultinomialSampler(temperature=0.3)
|
36 |
-
empty_tokens = [token_id for token_id in range(tokenizer.vocab_size) if not tokenizer.decode([token_id]).strip()]
|
37 |
sampler.set_max_repeats(empty_tokens, 1)
|
|
|
|
|
|
|
38 |
|
39 |
# This Sample & Dataset models ztr just templated with placeholder fields
|
40 |
|
|
|
1 |
|
2 |
import json
|
3 |
import logging
|
4 |
+
import regex
|
5 |
import time
|
6 |
from pathlib import Path
|
7 |
from typing import Annotated, Iterator
|
|
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
35 |
sampler = PenalizedMultinomialSampler()
|
36 |
low_temperature_sampler = PenalizedMultinomialSampler(temperature=0.3)
|
37 |
+
empty_tokens = [token_id for token_id in range(tokenizer.vocab_size) if not tokenizer.decode([token_id], skip_special_tokens=True).strip()]
|
38 |
sampler.set_max_repeats(empty_tokens, 1)
|
39 |
+
disallowed_patterns = [regex.compile(r"\p{Han}")] # focus on english for now
|
40 |
+
disallowed_tokens = [token_id for token_id in range(tokenizer.vocab_size) if any(pattern.match(tokenizer.decode([token_id], skip_special_tokens=True)) for pattern in disallowed_patterns)]
|
41 |
+
sampler.set_max_repeats(disallowed_tokens, 0)
|
42 |
|
43 |
# This Sample & Dataset models ztr just templated with placeholder fields
|
44 |
|
gradio_app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from urllib.parse import urlparse, parse_qs
|
3 |
|
4 |
import gradio as gr
|
@@ -13,8 +13,9 @@ DEFAULT_SEED = 42
|
|
13 |
DEFAULT_SIZE = 3
|
14 |
|
15 |
@spaces.GPU(duration=120)
|
16 |
-
def stream_output(
|
17 |
-
|
|
|
18 |
filename = parsed_filename.path
|
19 |
params = parse_qs(parsed_filename.query)
|
20 |
prompt = params["prompt"][0] if "prompt" in params else ""
|
@@ -22,30 +23,44 @@ def stream_output(filename: str):
|
|
22 |
size = int(params["size"][0]) if "size" in params else DEFAULT_SIZE
|
23 |
seed = int(params["seed"][0]) if "seed" in params else DEFAULT_SEED
|
24 |
if size > MAX_SIZE:
|
25 |
-
|
26 |
-
content =
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
for i, chunk in enumerate(stream_jsonl_file(
|
29 |
filename=filename,
|
30 |
prompt=prompt,
|
31 |
columns=columns,
|
32 |
-
seed=seed,
|
33 |
size=size,
|
34 |
)):
|
35 |
content += chunk
|
36 |
df = pd.read_json(io.StringIO(content), lines=True)
|
37 |
-
state_msg =
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
title = "LLM DataGen"
|
45 |
description = "Generate and stream synthetic dataset files in JSON Lines format"
|
46 |
examples = [
|
47 |
"movies_data.jsonl",
|
48 |
-
"dungeon_and_dragon_characters.jsonl"
|
49 |
"bad_amazon_reviews_on_defunct_products_that_people_hate.jsonl",
|
50 |
"common_first_names.jsonl?columns=first_name,popularity&size=10",
|
51 |
]
|
@@ -53,16 +68,20 @@ examples = [
|
|
53 |
with gr.Blocks() as demo:
|
54 |
gr.Markdown(f"# {title}")
|
55 |
gr.Markdown(description)
|
56 |
-
filename_comp = gr.Textbox(examples[0], placeholder=examples[0])
|
57 |
-
|
58 |
generate_button = gr.Button("Generate dataset")
|
59 |
-
state_msg_comp = gr.Markdown("🔥 Ready to generate")
|
60 |
with gr.Tab("Dataset"):
|
61 |
dataframe_comp = gr.DataFrame()
|
62 |
with gr.Tab("File content"):
|
63 |
file_content_comp = gr.Markdown()
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
demo.launch()
|
|
|
1 |
+
from pathlib import Path
|
2 |
from urllib.parse import urlparse, parse_qs
|
3 |
|
4 |
import gradio as gr
|
|
|
13 |
DEFAULT_SIZE = 3
|
14 |
|
15 |
@spaces.GPU(duration=120)
|
16 |
+
def stream_output(query: str, continue_content: str = ""):
|
17 |
+
query = Path(query).name
|
18 |
+
parsed_filename = urlparse(query)
|
19 |
filename = parsed_filename.path
|
20 |
params = parse_qs(parsed_filename.query)
|
21 |
prompt = params["prompt"][0] if "prompt" in params else ""
|
|
|
23 |
size = int(params["size"][0]) if "size" in params else DEFAULT_SIZE
|
24 |
seed = int(params["seed"][0]) if "seed" in params else DEFAULT_SEED
|
25 |
if size > MAX_SIZE:
|
26 |
+
raise gr.Error(f"Maximum size is {MAX_SIZE}. Duplicate this Space to remove this limit.")
|
27 |
+
content = continue_content
|
28 |
+
df = pd.read_json(io.StringIO(content), lines=True)
|
29 |
+
continue_content_size = len(df)
|
30 |
+
state_msg = f"⚙️ Generating... [{continue_content_size + 1}/{continue_content_size + size}]"
|
31 |
+
if list(df.columns):
|
32 |
+
columns = list(df.columns)
|
33 |
+
else:
|
34 |
+
df = pd.DataFrame({"1": [], "2": [], "3": []})
|
35 |
+
yield df, "```json\n" + content + "\n```", gr.Button(state_msg), gr.Button("Generate one more batch", interactive=False), gr.DownloadButton("⬇️ Download", interactive=False)
|
36 |
for i, chunk in enumerate(stream_jsonl_file(
|
37 |
filename=filename,
|
38 |
prompt=prompt,
|
39 |
columns=columns,
|
40 |
+
seed=seed + (continue_content_size // size),
|
41 |
size=size,
|
42 |
)):
|
43 |
content += chunk
|
44 |
df = pd.read_json(io.StringIO(content), lines=True)
|
45 |
+
state_msg = f"⚙️ Generating... [{continue_content_size + i + 1}/{continue_content_size + size}]"
|
46 |
+
yield df, "```json\n" + content + "\n```", gr.Button(state_msg), gr.Button("Generate one more batch", interactive=False), gr.DownloadButton("⬇️ Download", interactive=False)
|
47 |
+
with open(query, "w", encoding="utf-8") as f:
|
48 |
+
f.write(content)
|
49 |
+
yield df, "```json\n" + content + "\n```", gr.Button("Generate dataset"), gr.Button("Generate one more batch", visible=True, interactive=True), gr.DownloadButton("⬇️ Download", value=query, visible=True, interactive=True)
|
50 |
+
|
51 |
+
|
52 |
+
def stream_more_output(query: str):
|
53 |
+
query = Path(query).name
|
54 |
+
with open(query, "r", encoding="utf-8") as f:
|
55 |
+
continue_content = f.read()
|
56 |
+
yield from stream_output(query=query, continue_content=continue_content)
|
57 |
+
|
58 |
|
59 |
title = "LLM DataGen"
|
60 |
description = "Generate and stream synthetic dataset files in JSON Lines format"
|
61 |
examples = [
|
62 |
"movies_data.jsonl",
|
63 |
+
"dungeon_and_dragon_characters.jsonl",
|
64 |
"bad_amazon_reviews_on_defunct_products_that_people_hate.jsonl",
|
65 |
"common_first_names.jsonl?columns=first_name,popularity&size=10",
|
66 |
]
|
|
|
68 |
with gr.Blocks() as demo:
|
69 |
gr.Markdown(f"# {title}")
|
70 |
gr.Markdown(description)
|
71 |
+
filename_comp = gr.Textbox(examples[0], placeholder=examples[0], label="File name to generate")
|
72 |
+
outputs = []
|
73 |
generate_button = gr.Button("Generate dataset")
|
|
|
74 |
with gr.Tab("Dataset"):
|
75 |
dataframe_comp = gr.DataFrame()
|
76 |
with gr.Tab("File content"):
|
77 |
file_content_comp = gr.Markdown()
|
78 |
+
with gr.Row():
|
79 |
+
generate_more_button = gr.Button("Generate one more batch", visible=False, interactive=False, scale=3)
|
80 |
+
download_button = gr.DownloadButton("⬇️ Download", visible=False, interactive=False, scale=1)
|
81 |
+
outputs = [dataframe_comp, file_content_comp, generate_button, generate_more_button, download_button]
|
82 |
+
examples = gr.Examples(examples, filename_comp, outputs, fn=stream_output, run_on_click=True)
|
83 |
+
generate_button.click(stream_output, filename_comp, outputs)
|
84 |
+
generate_more_button.click(stream_more_output, filename_comp, outputs)
|
85 |
|
86 |
|
87 |
demo.launch()
|