from itertools import count, islice from typing import Any, Iterable, TypedVar import gradio as gr import requests import pandas as pd from datasets import Features from gradio_huggingfacehub_search import HuggingfaceHubSearch from analyze import get_column_description, get_columns_with_strings, presidio_scan_entities MAX_ROWS = 100 T = TypedVar("T") def stream_rows(dataset: str, config: str, split: str) -> Iterable[dict[str, Any]]: batch_size = 100 for i in count(): rows_resp = requests.get(f"https://datasets-server.huggingface.co/rows?dataset={dataset}&config={config}&split={split}&offset={i * batch_size}&length={batch_size}", timeout=20).json() if "error" in rows_resp: raise RuntimeError(rows_resp["error"]) if not rows_resp["rows"]: break for row_item in rows_resp["rows"]: yield row_item["row"] class track_iter: def __init__(self, it: Iterable[T]): self.it = it self.next_idx = 0 def __iter__(self) -> T: for item in self.it: self.next_idx += 1 yield item def analyze_dataset(dataset: str) -> pd.DataFrame: info_resp = requests.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json() if "error" in info_resp: yield "❌ " + info_resp["error"], pd.DataFrame() return config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"])) features = Features.from_dict(info_resp["dataset_info"][config]["features"]) split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(iter(info_resp["dataset_info"][config]["splits"])) num_rows = min(info_resp["dataset_info"][config]["splits"][split]["num_examples"], MAX_ROWS) scanned_columns = get_columns_with_strings(features) columns_descriptions = [ get_column_description(column_name, features[column_name]) for column_name in scanned_columns ] rows = track_iter(islice(stream_rows(dataset, config, split), MAX_ROWS)) presidio_entities = [] for presidio_entity in presidio_scan_entities( rows, scanned_columns=scanned_columns, columns_descriptions=columns_descriptions ): presidio_entities.append(presidio_entity) yield f"Scanning {dataset} [{rows.next_idx} / {num_rows}]:", pd.DataFrame(presidio_entities) demo = gr.Interface( fn=analyze_dataset, inputs=[ HuggingfaceHubSearch( label="Hub Dataset ID", placeholder="Search for dataset id on Huggingface", search_type="dataset", ), ], outputs=[ gr.Markdown(), gr.DataFrame(), ], title="Scan datasets using Presidio", description="The space takes an HF dataset name as an input, and returns the list of entities detected by Presidio in the first samples.", ) demo.launch()