|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
|
|
import hopsworks |
|
import joblib |
|
|
|
project = hopsworks.login() |
|
fs = project.get_feature_store() |
|
|
|
|
|
mr = project.get_model_registry() |
|
model = mr.get_model("titan_modal", version=50) |
|
model_dir = model.download() |
|
model = joblib.load(model_dir + "/titan_model.pkl") |
|
|
|
|
|
def titan(pclass, sex, age, fare, famliy): |
|
input_list = [] |
|
input_list.append(pclass) |
|
input_list.append(sex) |
|
input_list.append(age) |
|
input_list.append(fare) |
|
input_list.append(famliy) |
|
|
|
res = model.predict(np.asarray(input_list).reshape(1, -1)) |
|
|
|
|
|
survivor_url = "https://raw.githubusercontent.com/Chaouo/Titanic_serverless_ML/main/image/"+ str(res[0]) + ".png" |
|
img = Image.open(requests.get(survivor_url, stream=True).raw) |
|
return img |
|
|
|
demo = gr.Interface( |
|
fn=titan, |
|
title="Titanic Survival Predictive Analytics", |
|
description="Experiment with pclass, sex, age, fare, famliy to predict which flower it is.", |
|
allow_flagging="never", |
|
inputs=[ |
|
gr.inputs.Number(default=1.0, label="pclass (1-3)"), |
|
gr.inputs.Number(default=1.0, label="sex (0 indecates male and 1 indecates female)"), |
|
gr.inputs.Number(default=1.0, label="age"), |
|
gr.inputs.Number(default=1.0, label="fare (0-512)"), |
|
gr.inputs.Number(default=1.0, label="famliy (numbers)"), |
|
], |
|
outputs=gr.Image(type="pil")) |
|
|
|
demo.launch() |
|
|
|
|