File size: 6,176 Bytes
8fbb0f5
963c322
8fbb0f5
 
963c322
 
8fbb0f5
55877ba
963c322
8fbb0f5
963c322
41212e8
 
963c322
c882e97
55877ba
c882e97
8fbb0f5
 
 
 
 
 
 
 
 
 
 
c882e97
 
8fbb0f5
 
 
 
 
 
 
 
 
 
c882e97
 
8fbb0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
c882e97
8fbb0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c882e97
8fbb0f5
c882e97
8fbb0f5
c882e97
8fbb0f5
 
 
c882e97
8fbb0f5
 
 
 
 
 
 
 
41212e8
 
 
 
 
8fbb0f5
 
 
 
 
 
 
55877ba
8fbb0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c882e97
8fbb0f5
 
 
 
 
e6064e2
 
8fbb0f5
e6064e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import json
import logging
import sqlite3
from contextlib import asynccontextmanager
from typing import List

import numpy as np
from cashews import NOT_NONE, cache
from fastapi import FastAPI, HTTPException, Query
from pandas import Timestamp
from pydantic import BaseModel
from starlette.responses import RedirectResponse

from data_loader import refresh_data

cache.setup("mem://?check_interval=10&size=10000")
logger = logging.getLogger(__name__)


def get_db_connection():
    conn = sqlite3.connect("datasets.db")
    conn.row_factory = sqlite3.Row
    return conn


def setup_database():
    conn = get_db_connection()
    c = conn.cursor()
    c.execute(
        """CREATE TABLE IF NOT EXISTS datasets
                 (hub_id TEXT PRIMARY KEY, 
                  likes INTEGER,
                  downloads INTEGER,
                  tags TEXT,
                  created_at INTEGER,
                  last_modified INTEGER,
                  license TEXT,
                  language TEXT,
                  config_name TEXT,
                  column_names TEXT,
                  features TEXT)"""
    )
    c.execute("CREATE INDEX IF NOT EXISTS idx_column_names ON datasets (column_names)")
    conn.commit()
    conn.close()


def serialize_numpy(obj):
    if isinstance(obj, np.ndarray):
        return obj.tolist()
    if isinstance(obj, np.integer):
        return int(obj)
    if isinstance(obj, np.floating):
        return float(obj)
    if isinstance(obj, Timestamp):
        return int(obj.timestamp())
    logger.error(f"Object of type {type(obj)} is not JSON serializable")
    raise TypeError(f"Object of type {type(obj)} is not JSON serializable")


def insert_data(conn, data):
    c = conn.cursor()

    created_at = data.get("created_at", 0)
    if isinstance(created_at, Timestamp):
        created_at = int(created_at.timestamp())

    last_modified = data.get("last_modified", 0)
    if isinstance(last_modified, Timestamp):
        last_modified = int(last_modified.timestamp())

    c.execute(
        """
        INSERT OR REPLACE INTO datasets 
        (hub_id, likes, downloads, tags, created_at, last_modified, license, language, config_name, column_names, features) 
        VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
    """,
        (
            data["hub_id"],
            data.get("likes", 0),
            data.get("downloads", 0),
            json.dumps(data.get("tags", []), default=serialize_numpy),
            created_at,
            last_modified,
            json.dumps(data.get("license", []), default=serialize_numpy),
            json.dumps(data.get("language", []), default=serialize_numpy),
            data.get("config_name", ""),
            json.dumps(data.get("column_names", []), default=serialize_numpy),
            json.dumps(data.get("features", []), default=serialize_numpy),
        ),
    )
    conn.commit()


@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup: Load data into the database
    setup_database()
    logger.info("Creating database connection")
    conn = get_db_connection()
    logger.info("Refreshing data")
    datasets = refresh_data()

    for data in datasets:
        insert_data(conn, data)
    conn.close()
    logger.info("Data refreshed")
    yield
    # Shutdown: You can add any cleanup operations here if needed
    # For example, closing database connections, clearing caches, etc.


app = FastAPI(lifespan=lifespan)


@app.get("/", include_in_schema=False)
def root():
    return RedirectResponse(url="/docs")


class SearchResponse(BaseModel):
    total: int
    page: int
    page_size: int
    results: List[dict]


@cache(ttl="1h", condition=NOT_NONE)
@app.get("/search", response_model=SearchResponse)
async def search_datasets(
    columns: List[str] = Query(...),
    match_all: bool = Query(False),
    page: int = Query(1, ge=1),
    page_size: int = Query(10, ge=1, le=1000),
):
    offset = (page - 1) * page_size
    conn = get_db_connection()
    c = conn.cursor()

    try:
        if match_all:
            query = """
            SELECT COUNT(*) as total FROM datasets
            WHERE (SELECT COUNT(*) FROM json_each(column_names)
                   WHERE value IN ({})) = ?
            """.format(",".join("?" * len(columns)))
            c.execute(query, (*columns, len(columns)))
        else:
            query = """
            SELECT COUNT(*) as total FROM datasets
            WHERE EXISTS (
                SELECT 1 FROM json_each(column_names)
                WHERE value IN ({})
            )
            """.format(",".join("?" * len(columns)))
            c.execute(query, columns)

        total = c.fetchone()["total"]

        if match_all:
            query = """
            SELECT * FROM datasets
            WHERE (SELECT COUNT(*) FROM json_each(column_names)
                   WHERE value IN ({})) = ?
            LIMIT ? OFFSET ?
            """.format(",".join("?" * len(columns)))
            c.execute(query, (*columns, len(columns), page_size, offset))
        else:
            query = """
            SELECT * FROM datasets
            WHERE EXISTS (
                SELECT 1 FROM json_each(column_names)
                WHERE value IN ({})
            )
            LIMIT ? OFFSET ?
            """.format(",".join("?" * len(columns)))
            c.execute(query, (*columns, page_size, offset))

        results = [dict(row) for row in c.fetchall()]

        for result in results:
            result["tags"] = json.loads(result["tags"])
            result["license"] = json.loads(result["license"])
            result["language"] = json.loads(result["language"])
            result["column_names"] = json.loads(result["column_names"])
            result["features"] = json.loads(result["features"])

        return SearchResponse(
            total=total, page=page, page_size=page_size, results=results
        )

    except sqlite3.Error as e:
        logger.error(f"Database error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Database error: {str(e)}") from e
    finally:
        conn.close()


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8000)