Commit
·
5721477
1
Parent(s):
b558f4f
schedule collections refresh
Browse files- create_collections.py +128 -0
- main.py +20 -0
create_collections.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Iterator, List
|
2 |
+
|
3 |
+
import requests
|
4 |
+
from huggingface_hub import add_collection_item, create_collection
|
5 |
+
from tqdm.auto import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
class DatasetSearchClient:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
base_url: str = "https://librarian-bots-dataset-column-search-api.hf.space",
|
12 |
+
):
|
13 |
+
self.base_url = base_url
|
14 |
+
|
15 |
+
def search(
|
16 |
+
self, columns: List[str], match_all: bool = False, page_size: int = 100
|
17 |
+
) -> Iterator[Dict[str, Any]]:
|
18 |
+
"""
|
19 |
+
Search datasets using the provided API, automatically handling pagination.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
columns (List[str]): List of column names to search for.
|
23 |
+
match_all (bool, optional): If True, match all columns. If False, match any column. Defaults to False.
|
24 |
+
page_size (int, optional): Number of results per page. Defaults to 100.
|
25 |
+
|
26 |
+
Yields:
|
27 |
+
Dict[str, Any]: Each dataset result from all pages.
|
28 |
+
|
29 |
+
Raises:
|
30 |
+
requests.RequestException: If there's an error with the HTTP request.
|
31 |
+
ValueError: If the API returns an unexpected response format.
|
32 |
+
"""
|
33 |
+
page = 1
|
34 |
+
total_results = None
|
35 |
+
|
36 |
+
while total_results is None or (page - 1) * page_size < total_results:
|
37 |
+
params = {
|
38 |
+
"columns": columns,
|
39 |
+
"match_all": str(match_all).lower(),
|
40 |
+
"page": page,
|
41 |
+
"page_size": page_size,
|
42 |
+
}
|
43 |
+
|
44 |
+
try:
|
45 |
+
response = requests.get(f"{self.base_url}/search", params=params)
|
46 |
+
response.raise_for_status()
|
47 |
+
data = response.json()
|
48 |
+
|
49 |
+
if not {"total", "page", "page_size", "results"}.issubset(data.keys()):
|
50 |
+
raise ValueError("Unexpected response format from the API")
|
51 |
+
|
52 |
+
if total_results is None:
|
53 |
+
total_results = data["total"]
|
54 |
+
|
55 |
+
yield from data["results"]
|
56 |
+
page += 1
|
57 |
+
|
58 |
+
except requests.RequestException as e:
|
59 |
+
raise requests.RequestException(
|
60 |
+
f"Error connecting to the API: {str(e)}"
|
61 |
+
) from e
|
62 |
+
except ValueError as e:
|
63 |
+
raise ValueError(f"Error processing API response: {str(e)}") from e
|
64 |
+
|
65 |
+
|
66 |
+
# Create an instance of the client
|
67 |
+
client = DatasetSearchClient()
|
68 |
+
|
69 |
+
|
70 |
+
def update_collection_for_dataset(
|
71 |
+
collection_name: str = None,
|
72 |
+
dataset_columns: List[str] = None,
|
73 |
+
collection_description: str = None,
|
74 |
+
collection_namespace: str = None,
|
75 |
+
):
|
76 |
+
if not collection_name:
|
77 |
+
collection = create_collection(
|
78 |
+
collection_name, exists_ok=True, description=collection_description
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
collection = create_collection(
|
82 |
+
collection_name,
|
83 |
+
exists_ok=True,
|
84 |
+
description=collection_description,
|
85 |
+
namespace=collection_namespace,
|
86 |
+
)
|
87 |
+
results = list(
|
88 |
+
tqdm(
|
89 |
+
client.search(dataset_columns, match_all=True),
|
90 |
+
desc="Searching datasets...",
|
91 |
+
leave=False,
|
92 |
+
)
|
93 |
+
)
|
94 |
+
for result in tqdm(results, desc="Adding datasets to collection...", leave=False):
|
95 |
+
try:
|
96 |
+
add_collection_item(
|
97 |
+
collection.slug, result["hub_id"], item_type="dataset", exists_ok=True
|
98 |
+
)
|
99 |
+
except Exception as e:
|
100 |
+
print(
|
101 |
+
f"Error adding dataset {result['hub_id']} to collection {collection_name}: {str(e)}"
|
102 |
+
)
|
103 |
+
return f"https://huggingface.co/collections/{collection.slug}"
|
104 |
+
|
105 |
+
|
106 |
+
collections = [
|
107 |
+
{
|
108 |
+
"dataset_columns": ["chosen", "rejected", "prompt"],
|
109 |
+
"collection_description": "Datasets suitable for Direct Preference Optimization based on having 'chosen', 'rejected', and 'prompt' columns",
|
110 |
+
"collection_name": "Direct Preference Optimization Datasets",
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"dataset_columns": ["image", "chosen", "rejected"],
|
114 |
+
"collection_description": "Datasets suitable for Image Preference Optimization based on having 'image','chosen', and 'rejected' columns",
|
115 |
+
"collection_name": "Image Preference Optimization Datasets",
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"collection_name": "Alpaca Style Datasets",
|
119 |
+
"dataset_columns": ["instruction", "input", "output"],
|
120 |
+
"collection_description": "Datasets which follow the Alpaca Style format based on having 'instruction', 'input', and 'output' columns",
|
121 |
+
},
|
122 |
+
]
|
123 |
+
|
124 |
+
results = [
|
125 |
+
update_collection_for_dataset(**collection, collection_namespace="librarian-bots")
|
126 |
+
for collection in collections
|
127 |
+
]
|
128 |
+
print(results)
|
main.py
CHANGED
@@ -17,6 +17,7 @@ from pandas import Timestamp
|
|
17 |
from pydantic import BaseModel
|
18 |
from starlette.responses import RedirectResponse
|
19 |
|
|
|
20 |
from data_loader import refresh_data
|
21 |
|
22 |
login(token=os.getenv("HF_TOKEN"))
|
@@ -163,6 +164,23 @@ async def update_database():
|
|
163 |
logger.error(f"Error uploading database file to Hugging Face Hub: {str(e)}")
|
164 |
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
@asynccontextmanager
|
167 |
async def lifespan(app: FastAPI):
|
168 |
setup_database()
|
@@ -173,6 +191,8 @@ async def lifespan(app: FastAPI):
|
|
173 |
scheduler = AsyncIOScheduler()
|
174 |
# Schedule the update_database function using the UPDATE_SCHEDULE configuration
|
175 |
scheduler.add_job(update_database, CronTrigger(**UPDATE_SCHEDULE))
|
|
|
|
|
176 |
scheduler.start()
|
177 |
|
178 |
yield
|
|
|
17 |
from pydantic import BaseModel
|
18 |
from starlette.responses import RedirectResponse
|
19 |
|
20 |
+
from create_collections import collections, update_collection_for_dataset
|
21 |
from data_loader import refresh_data
|
22 |
|
23 |
login(token=os.getenv("HF_TOKEN"))
|
|
|
164 |
logger.error(f"Error uploading database file to Hugging Face Hub: {str(e)}")
|
165 |
|
166 |
|
167 |
+
async def update_collections():
|
168 |
+
logger.info("Starting scheduled collection update")
|
169 |
+
try:
|
170 |
+
for collection in collections:
|
171 |
+
result = await asyncio.get_event_loop().run_in_executor(
|
172 |
+
None,
|
173 |
+
update_collection_for_dataset,
|
174 |
+
collection["collection_name"],
|
175 |
+
collection["dataset_columns"],
|
176 |
+
collection["collection_description"],
|
177 |
+
"librarian-bots",
|
178 |
+
)
|
179 |
+
logger.info(f"Updated collection: {result}")
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Error during collection update: {str(e)}")
|
182 |
+
|
183 |
+
|
184 |
@asynccontextmanager
|
185 |
async def lifespan(app: FastAPI):
|
186 |
setup_database()
|
|
|
191 |
scheduler = AsyncIOScheduler()
|
192 |
# Schedule the update_database function using the UPDATE_SCHEDULE configuration
|
193 |
scheduler.add_job(update_database, CronTrigger(**UPDATE_SCHEDULE))
|
194 |
+
# Schedule the update_collections function to run daily at midnight
|
195 |
+
scheduler.add_job(update_collections, CronTrigger(hour=0, minute=0))
|
196 |
scheduler.start()
|
197 |
|
198 |
yield
|