import asyncio import concurrent.futures import json import logging import os import sqlite3 from contextlib import asynccontextmanager from typing import List import numpy as np from apscheduler.schedulers.asyncio import AsyncIOScheduler from apscheduler.triggers.cron import CronTrigger from cashews import NOT_NONE, cache from fastapi import FastAPI, HTTPException, Query from huggingface_hub import login, upload_file from pandas import Timestamp from pydantic import BaseModel from starlette.responses import RedirectResponse from create_collections import collections, update_collection_for_dataset from data_loader import refresh_data login(token=os.getenv("HF_TOKEN")) UPDATE_SCHEDULE = {"hour": os.getenv("UPDATE_INTERVAL_HOURS", "*/6")} COLLECTION_UPDATE_SCHEDULE = {"hour": "0"} # Run at midnight every day cache.setup("mem://?check_interval=10&size=10000") logger = logging.getLogger(__name__) def get_db_connection(): conn = sqlite3.connect("datasets.db") conn.row_factory = sqlite3.Row conn.execute("PRAGMA journal_mode = WAL") conn.execute("PRAGMA synchronous = NORMAL") return conn def setup_database(): conn = get_db_connection() c = conn.cursor() c.execute( """CREATE TABLE IF NOT EXISTS datasets (hub_id TEXT PRIMARY KEY, likes INTEGER, downloads INTEGER, tags JSON, created_at INTEGER, last_modified INTEGER, license JSON, language JSON, config_name TEXT, column_names JSON, features JSON)""" ) c.execute( """ CREATE INDEX IF NOT EXISTS idx_column_names ON datasets(column_names) """ ) c.execute( """ CREATE INDEX IF NOT EXISTS idx_downloads_likes ON datasets(downloads DESC, likes DESC) """ ) conn.commit() c.execute("ANALYZE") conn.close() def serialize_numpy(obj): if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if isinstance(obj, Timestamp): return int(obj.timestamp()) logger.error(f"Object of type {type(obj)} is not JSON serializable") raise TypeError(f"Object of type {type(obj)} is not JSON serializable") def background_refresh_data(): logger.info("Starting background data refresh") try: return refresh_data() except Exception as e: logger.error(f"Error in background data refresh: {str(e)}") return None async def update_database(): logger.info("Starting scheduled data refresh") with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(background_refresh_data) try: datasets = await asyncio.get_event_loop().run_in_executor( None, future.result ) except asyncio.CancelledError: future.cancel() logger.info("Data refresh cancelled") return if datasets is None: logger.error("Data refresh failed, skipping database update") return conn = get_db_connection() try: c = conn.cursor() c.executemany( """ INSERT OR REPLACE INTO datasets (hub_id, likes, downloads, tags, created_at, last_modified, license, language, config_name, column_names, features) VALUES (?, ?, ?, json(?), ?, ?, json(?), json(?), ?, json(?), json(?)) """, [ ( data["hub_id"], data.get("likes", 0), data.get("downloads", 0), json.dumps(data.get("tags", []), default=serialize_numpy), int(data["created_at"].timestamp()) if isinstance(data["created_at"], Timestamp) else data.get("created_at", 0), int(data["last_modified"].timestamp()) if isinstance(data["last_modified"], Timestamp) else data.get("last_modified", 0), json.dumps(data.get("license", []), default=serialize_numpy), json.dumps(data.get("language", []), default=serialize_numpy), data.get("config_name", ""), json.dumps(data.get("column_names", []), default=serialize_numpy), json.dumps(data.get("features", []), default=serialize_numpy), ) for data in datasets ], ) conn.commit() logger.info("Scheduled data refresh completed") except Exception as e: logger.error(f"Error during database update: {str(e)}") conn.rollback() finally: conn.close() try: upload_file( path_or_fileobj="datasets.db", path_in_repo="datasets.db", repo_id="librarian-bots/column-db", repo_type="dataset", ) logger.info("Database file uploaded to Hugging Face Hub successfully") except Exception as e: logger.error(f"Error uploading database file to Hugging Face Hub: {str(e)}") async def update_collections(): logger.info("Starting scheduled collection update") try: for collection in collections: result = await asyncio.get_event_loop().run_in_executor( None, update_collection_for_dataset, collection["collection_name"], collection["dataset_columns"], collection["collection_description"], "librarian-bots", ) logger.info(f"Updated collection: {result}") except Exception as e: logger.error(f"Error during collection update: {str(e)}") @asynccontextmanager async def lifespan(app: FastAPI): setup_database() logger.info("Performing initial data refresh") await update_database() scheduler = AsyncIOScheduler() scheduler.add_job(update_database, CronTrigger(**UPDATE_SCHEDULE)) scheduler.add_job(update_collections, CronTrigger(**COLLECTION_UPDATE_SCHEDULE)) scheduler.start() await update_collections() yield scheduler.shutdown() app = FastAPI(lifespan=lifespan) @app.get("/", include_in_schema=False) def root(): return RedirectResponse(url="/docs") class SearchResponse(BaseModel): total: int page: int page_size: int results: List[dict] @cache(ttl="1h", condition=NOT_NONE) @app.get("/search", response_model=SearchResponse) async def search_datasets( columns: List[str] = Query(...), match_all: bool = Query(False), page: int = Query(1, ge=1), page_size: int = Query(10, ge=1, le=1000), ): offset = (page - 1) * page_size conn = get_db_connection() c = conn.cursor() try: if match_all: query = """ SELECT *, ( SELECT COUNT(*) FROM json_each(column_names) WHERE json_each.value IN ({}) ) as match_count FROM datasets WHERE match_count = ? ORDER BY downloads DESC, likes DESC LIMIT ? OFFSET ? """.format(",".join("?" * len(columns))) c.execute(query, (*columns, len(columns), page_size, offset)) else: query = """ SELECT * FROM datasets WHERE EXISTS ( SELECT 1 FROM json_each(column_names) WHERE json_each.value IN ({}) ) ORDER BY downloads DESC, likes DESC LIMIT ? OFFSET ? """.format(",".join("?" * len(columns))) c.execute(query, (*columns, page_size, offset)) results = [dict(row) for row in c.fetchall()] if match_all: count_query = """ SELECT COUNT(*) as total FROM datasets WHERE ( SELECT COUNT(*) FROM json_each(column_names) WHERE json_each.value IN ({}) ) = ? """.format(",".join("?" * len(columns))) c.execute(count_query, (*columns, len(columns))) else: count_query = """ SELECT COUNT(*) as total FROM datasets WHERE EXISTS ( SELECT 1 FROM json_each(column_names) WHERE json_each.value IN ({}) ) """.format(",".join("?" * len(columns))) c.execute(count_query, columns) total = c.fetchone()["total"] for result in results: result["tags"] = json.loads(result["tags"]) result["license"] = json.loads(result["license"]) result["language"] = json.loads(result["language"]) result["column_names"] = json.loads(result["column_names"]) result["features"] = json.loads(result["features"]) return SearchResponse( total=total, page=page, page_size=page_size, results=results ) except sqlite3.Error as e: logger.error(f"Database error: {str(e)}") raise HTTPException(status_code=500, detail=f"Database error: {str(e)}") from e finally: conn.close() if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)