Spaces:
Runtime error
Runtime error
File size: 4,646 Bytes
5c6edfb a60b83b 1528648 5c6edfb 1528648 5c6edfb 65a7901 4daeaec 65a7901 a60b83b 5c6edfb 4daeaec 5c6edfb 4daeaec a60b83b 4daeaec a60b83b 4daeaec a60b83b 4daeaec a60b83b 4daeaec a60b83b 4daeaec 5c6edfb 9c908f8 5c6edfb 4daeaec 5c6edfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
from gradio_client import Client, handle_file
import numpy as np
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
flux_1_schell_spaces = ["https://black-forest-labs-flux-1-schnell.hf.space", "ChristianHappy/FLUX.1-schnell", "innoai/FLUX.1-schnell", "tuan2308/FLUX.1-schnell", "FiditeNemini/FLUX.1-schnell"]
# flux_1_schnell_space = "https://black-forest-labs-flux-1-schnell.hf.space"
client = None
job = None
selected_space_index = gr.State(0);
def infer(selected_space_index, prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
global job
global client
# Asegúrate de que selected_space_index esté inicializado antes de este bloque de código
max_attempts = len(flux_1_schell_spaces)
attempts = 0
while client is None and attempts < max_attempts:
try:
selected_space = flux_1_schell_spaces[selected_space_index]
client = Client(selected_space)
print(f"Loaded custom model from {selected_space}")
except ValueError as e:
print(f"Failed to load custom model from {selected_space}: {e}")
selected_space_index = (selected_space_index + 1) % len(flux_1_schell_spaces)
client = None
attempts += 1
if client is None:
raise gr.Error("Failed to load client after trying all spaces.")
try:
job = client.submit(
prompt=prompt,
seed=seed,
randomize_seed=randomize_seed,
width=width,
height=height,
num_inference_steps=num_inference_steps,
api_name="/infer"
)
result = job.result()
except ValueError as e:
raise gr.Error(e)
return (selected_space_index, ) + result
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
[black-forest-labs/FLUX.1-schnell](https://huggingface.co/spaces/black-forest-labs/FLUX.1-schnell)
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/2024/07/31/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [selected_space_index, prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [selected_space_index, result, seed]
)
demo.launch() |