File size: 5,551 Bytes
e76f467
 
41eb2e8
fcb27fb
 
41eb2e8
 
e423e8d
a827413
e423e8d
 
 
 
 
 
 
 
 
0b22058
f48ecfa
0b22058
 
 
cb202cc
e423e8d
cb202cc
0b22058
e423e8d
cb202cc
0b22058
 
4d4e4ab
0b22058
 
 
 
4f61531
0b22058
 
cb202cc
 
d8c88bb
 
 
0b22058
cb202cc
85408e4
 
 
 
 
 
 
 
 
 
c92760e
0b22058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b50209
 
 
 
 
 
41eb2e8
 
 
 
 
 
 
 
 
 
e423e8d
41eb2e8
 
 
 
 
 
 
 
 
 
 
 
0b22058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e423e8d
0b22058
 
 
e423e8d
4d4e4ab
0b22058
85408e4
 
7abaf33
e423e8d
 
e76f467
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import gradio as gr
import json
from gradio_client import Client

with open('loras.json', 'r') as f:
    loras = json.load(f)
    

def infer (selected_index, prompt, style_prompt, inf_steps, guidance_scale, width, height, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):    
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")
    
    # custom_model="lichorosario/dott_remastered_style_lora_sdxl"
    # weight_name="dott_style.safetensors"
    selected_lora = loras[selected_index]
    custom_model = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]

    client = Client("fffiloni/sd-xl-custom-model")
    result = client.predict(
    		custom_model=custom_model,
    		api_name="/load_model"
    )
    weight_name = result[2]['value']

    client = Client("fffiloni/sd-xl-custom-model")
    prompt = trigger_word+". "+prompt+". "+style_prompt
    result = client.predict(
		custom_model=custom_model,
		weight_name=weight_name,
		prompt=prompt,
		inf_steps=inf_steps,
		guidance_scale=guidance_scale,
		width=width,
		height=height,
		seed=seed,
		lora_weight=lora_weight,
		api_name="/infer"
    )

    new_result = result + (prompt, )

    return new_result


def update_selection(evt: gr.SelectData):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index
    )


css="""
#col-container{
    margin: 0 auto;
    max-width: 720px;
    text-align: left;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
button#load_model_btn{
    height: 46px;
}
#status_info{
    font-size: 0.9em;
}
.custom-color {
    color: #030303 !important;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# lichorosario LoRA Portfolio")
    gr.Markdown(
        "### This is my portfolio.\n"
        "**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
        "Special thanks to [@artificialguybr](https://huggingface.co/artificialguybr) and [@fffiloni](https://huggingface.co/fffiloni)."
    )

    with gr.Row():
        with gr.Column(scale=2):
            prompt_in = gr.Textbox(
            label="Your Prompt",
            info = "Dont' forget to include your trigger word if necessary"
            )   
            style_prompt_in = gr.Textbox(
            label="Your Style Prompt"
            )   
            selected_info = gr.Markdown("")
            used_prompt = gr.Textbox(
                label="Used prompt"
            )

        with gr.Column(scale=1):
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=2
            )

    with gr.Column(elem_id="col-container"):
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                inf_steps = gr.Slider(
                    label="Inference steps",
                    minimum=12,
                    maximum=50,
                    step=1,
                    value=25
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=50.0,
                    step=0.1,
                    value=7.5
                )
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=2048,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=2048,
                    step=32,
                    value=1024,
                )
    
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    info = "-1 denotes a random seed",
                    minimum=-1,
                    maximum=423538377342,
                    step=1,
                    value=-1
                )
                last_used_seed = gr.Number(
                    label = "Last used seed",
                    info = "the seed used in the last generation",
                )
            lora_weight = gr.Slider(
                label="LoRa weigth",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=1.0
            )
    submit_btn = gr.Button("Submit")
    image_out = gr.Image(label="Image output")
    selected_index = gr.State(None)

    submit_btn.click(
        fn = infer,
        inputs = [selected_index, prompt_in, style_prompt_in, inf_steps, guidance_scale, width, height, seed, lora_weight],
        outputs = [image_out, last_used_seed, used_prompt]
    )
    gallery.select(update_selection, outputs=[prompt_in, selected_info, selected_index])




demo.launch()