File size: 7,786 Bytes
e76f467
 
41eb2e8
e8606c8
c70a26e
fcb27fb
41eb2e8
 
a827413
b7eba49
 
e8606c8
 
 
 
 
 
 
 
 
 
 
4eaf0e2
9a4acf1
b7eba49
bfb7036
0b22058
bfb7036
 
 
 
 
 
 
cb202cc
4eaf0e2
bfb7036
 
 
 
 
 
 
 
4eaf0e2
bfb7036
 
 
 
 
 
 
 
 
 
 
 
 
d8c88bb
bfb7036
 
 
0b22058
b7eba49
 
 
 
 
 
cb202cc
85408e4
 
 
 
 
 
 
 
 
 
c92760e
c70a26e
 
a01682c
9a4acf1
 
 
 
 
 
 
 
 
 
8b795ce
a01682c
 
260ee77
c70a26e
0b22058
 
 
 
1b50209
 
 
 
 
 
41eb2e8
 
 
 
b7eba49
 
 
41eb2e8
b7eba49
 
e423e8d
41eb2e8
 
 
bcf76f5
 
 
 
 
 
113b7ab
bcf76f5
 
 
 
 
 
 
 
05d12ce
bcf76f5
 
 
 
 
05d12ce
bcf76f5
05d12ce
bcf76f5
 
 
 
05d12ce
bcf76f5
 
 
c70a26e
 
 
 
 
 
 
 
 
 
 
 
bcf76f5
 
 
 
b7eba49
bcf76f5
 
 
 
 
 
b7eba49
 
bcf76f5
 
b7eba49
bcf76f5
 
 
 
 
41eb2e8
 
 
 
 
 
546365b
 
41eb2e8
 
0b22058
b7eba49
c70a26e
 
1c32ab0
3e2b1f9
c70a26e
e423e8d
0b22058
 
b7eba49
 
 
 
 
 
 
0b22058
4e6797d
3e2b1f9
 
4e6797d
3e2b1f9
 
 
 
 
c70a26e
 
85408e4
 
e76f467
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import gradio as gr
import json
from gradio_client import Client, handle_file
from gradio_imageslider import ImageSlider

with open('loras.json', 'r') as f:
    loras = json.load(f)

job = None

# Verificar las URLs de los modelos
custom_model_url = "https://fffiloni-sd-xl-custom-model.hf.space"
tile_upscaler_url = "https://gokaygokay/Tile-Upscaler.hf.space"
try:
    client_custom_model = Client(custom_model_url)
    # client_custom_model = CustomModelClient(custom_model_url)
    print(f"Loaded custom model from {custom_model_url}")
except ValueError as e:
    print(f"Failed to load custom model: {e}")

        # other_client = Client("gokaygokay/Tile-Upscaler")


def infer(selected_index, prompt, style_prompt, inf_steps, guidance_scale, width, height, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):    
    try:

        global job
        if selected_index is None:
            raise gr.Error("You must select a LoRA before proceeding.")
        
        selected_lora = loras[selected_index]
        custom_model = selected_lora["repo"]
        trigger_word = selected_lora["trigger_word"]

        result = client_custom_model.submit(
            custom_model=custom_model,
            api_name="/load_model"
        )
        weight_name = result.result()[2]['value']

        prompt_arr = [trigger_word, prompt, style_prompt]
        prompt = '. '.join([element.strip() for element in prompt_arr if element.strip() != ''])
        
        job = client_custom_model.submit(
            custom_model=custom_model,
            weight_name=weight_name,
            prompt=prompt,
            inf_steps=inf_steps,
            guidance_scale=guidance_scale,
            width=width,
            height=height,
            seed=seed,
            lora_weight=lora_weight,
            api_name="/infer"
        )
        result = job.result()
        new_result = result + (prompt, )

        return new_result
    except Exception as e:
        gr.Warning("Error: " + str(e))

def cancel_infer():
    global job
    if job:
        job.cancel()
        return "Job has been cancelled"
    return "No job to cancel"

def update_selection(evt: gr.SelectData):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index
    )


def upscale(image, resolution, inf_steps, strength, hdr_effect, guidance_scale):
    try:
        # other_client = Client("gokaygokay/Tile-Upscaler")
        # result = other_client.predict(
        #     param_0=handle_file(image),
        #     param_1=resolution,
        #     param_2=inf_steps,
        #     param_3=strength,
        #     param_4=hdr_effect,
        #     param_5=guidance_scale,
        #     api_name="/wrapper"
        # )
        return [image, image]
        return result
    except Exception as e:
        gr.Warning("Error: " + str(e))

css="""
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# lichorosario LoRA Portfolio")
    gr.Markdown(
        "### This is my portfolio.\n"
        "**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
        "Special thanks to [@artificialguybr](https://huggingface.co/artificialguybr) and [@fffiloni](https://huggingface.co/fffiloni)."
    )

    with gr.Row():
        with gr.Column(scale=2):
            prompt_in = gr.Textbox(
                label="Your Prompt",
                info="Don't forget to include your trigger word if necessary"
            )
            style_prompt_in = gr.Textbox(
                label="Your Style Prompt"
            )
            selected_info = gr.Markdown("")
            used_prompt = gr.Textbox(
                label="Used prompt"
            )
            with gr.Column(elem_id="col-container"):
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        inf_steps = gr.Slider(
                            label="Inference steps",
                            minimum=12,
                            maximum=100,
                            step=1,
                            value=25
                        )
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=50.0,
                            step=0.1,
                            value=12
                        )
                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=3072,
                            step=32,
                            value=2048,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=3072,
                            step=32,
                            value=1024,
                        )
                                              
                        examples = [
                            [1024,512],
                            [2048,512],
                            [3072, 512]
                        ]
                        gr.Examples(
                            label="Presets",
                            examples=examples,
                            inputs=[width, height],
                            outputs=[]
                        )
            
                    with gr.Row():
                        seed = gr.Slider(
                            label="Seed",
                            info="-1 denotes a random seed",
                            minimum=-1,
                            maximum=423538377342,
                            step=1,
                            value=-1
                        )
                        last_used_seed = gr.Number(
                            label="Last used seed",
                            info="the seed used in the last generation",
                        )
                    lora_weight = gr.Slider(
                        label="LoRa weight",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.01,
                        value=1.0
                    )

        with gr.Column(scale=1):
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=2,
                height="100%"
            )

    submit_btn = gr.Button("Submit")
    cancel_btn = gr.Button("Cancel")
    with gr.Row():
        image_out = gr.Image(label="Image output")
        image_upscaled = ImageSlider(label="Before / After", type="numpy", show_download_button=False)
    scale_btn = gr.Button("Upscale")

    selected_index = gr.State(None)

    submit_btn.click(
        fn=infer,
        inputs=[selected_index, prompt_in, style_prompt_in, inf_steps, guidance_scale, width, height, seed, lora_weight],
        outputs=[image_out, last_used_seed, used_prompt]
    )
    cancel_btn.click(
        fn=cancel_infer,
        outputs=[]
    )

    def upscale_with_fixed_values(image):
        return upscale(image, 768, 25, 0.4, 0.3, 7.5)

    scale_btn.click(
        fn=upscale_with_fixed_values,
        inputs=[image_out],
        outputs=[image_upscaled]
    )


    gallery.select(update_selection, outputs=[prompt_in, selected_info, selected_index])

demo.launch()