lichorosario commited on
Commit
95fcad5
1 Parent(s): 931f2d6

feat: Update app.py to use new Tile-Upscaler client

Browse files
Files changed (1) hide show
  1. app.py +23 -23
app.py CHANGED
@@ -41,7 +41,6 @@ def infer(selected_index, prompt, style_prompt, inf_steps, guidance_scale, width
41
  trigger_word = selected_lora["trigger_word"]
42
 
43
  global client_custom_model
44
- global client_tile_upscaler
45
 
46
  if client_custom_model is None:
47
  try:
@@ -52,16 +51,6 @@ def infer(selected_index, prompt, style_prompt, inf_steps, guidance_scale, width
52
  client_custom_model = None
53
  raise gr.Error("Failed to load client for " + custom_model_url)
54
 
55
- if client_tile_upscaler is None:
56
- try:
57
- client_tile_upscaler = Client(tile_upscaler_url)
58
- print(f"Loaded custom model from {tile_upscaler_url}")
59
- except ValueError as e:
60
- print(f"Failed to load custom model: {e}")
61
- client_custom_model = None
62
- raise gr.Error("Failed to load client for " + tile_upscaler_url)
63
-
64
-
65
 
66
  result = client_custom_model.submit(
67
  custom_model=custom_model,
@@ -111,18 +100,29 @@ def update_selection(evt: gr.SelectData):
111
 
112
 
113
  def upscale_image(image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name):
114
- result = client_tile_upscaler.predict(
115
- param_0=handle_file(image),
116
- param_1=resolution,
117
- param_2=num_inference_steps,
118
- param_3=strength,
119
- param_4=hdr,
120
- param_5=guidance_scale,
121
- param_6=controlnet_strength,
122
- param_7=scheduler_name,
123
- api_name="/wrapper"
124
- )
125
- return result
 
 
 
 
 
 
 
 
 
 
 
126
 
127
 
128
 
 
41
  trigger_word = selected_lora["trigger_word"]
42
 
43
  global client_custom_model
 
44
 
45
  if client_custom_model is None:
46
  try:
 
51
  client_custom_model = None
52
  raise gr.Error("Failed to load client for " + custom_model_url)
53
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  result = client_custom_model.submit(
56
  custom_model=custom_model,
 
100
 
101
 
102
  def upscale_image(image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name):
103
+ global client_tile_upscaler
104
+
105
+ if client_tile_upscaler is None:
106
+ try:
107
+ client_tile_upscaler = Client(tile_upscaler_url)
108
+ print(f"Loaded custom model from {tile_upscaler_url}")
109
+ except ValueError as e:
110
+ print(f"Failed to load custom model: {e}")
111
+ client_custom_model = None
112
+ raise gr.Error("Failed to load client for " + tile_upscaler_url)
113
+
114
+ result = client_tile_upscaler.predict(
115
+ param_0=handle_file(image),
116
+ param_1=resolution,
117
+ param_2=num_inference_steps,
118
+ param_3=strength,
119
+ param_4=hdr,
120
+ param_5=guidance_scale,
121
+ param_6=controlnet_strength,
122
+ param_7=scheduler_name,
123
+ api_name="/wrapper"
124
+ )
125
+ return result
126
 
127
 
128