import os import gradio as gr from gradio_client import Client api_key = os.getenv('HF_API_KEY') custom_model = "lichorosario/dott_remastered_style_lora_sdxl" weight_name = "dott_style.safetensors" def predict(prompt): client = Client("fffiloni/sd-xl-custom-model", api_key=api_key) # Load the model client.predict( custom_model=custom_model, api_name="/load_model" ) # Infer the image result = client.predict( custom_model=custom_model, weight_name=weight_name, prompt=prompt, inf_steps=25, guidance_scale=12, width=1024, height=512, seed=-1, lora_weight=1, api_name="/infer" ) # Assuming result is a dictionary with keys 'image' and 'seed' image = result["image"] seed = result["seed"] return image, seed with gr.Blocks() as demo: inputs = gr.Textbox(label="Prompt") outputs = [gr.Image(label="Image"), gr.Textbox(label="Seed")] greet_btn = gr.Button("Generate") greet_btn.click(fn=predict, inputs=inputs, outputs=outputs) demo.launch()