import os import gradio as gr import json from gradio_client import Client with open('loras.json', 'r') as f: loras = json.load(f) def infer (selected_index, prompt, style_prompt, inf_steps, guidance_scale, width, height, seed, lora_weight, progress=gr.Progress(track_tqdm=True)): if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") # custom_model="lichorosario/dott_remastered_style_lora_sdxl" # weight_name="dott_style.safetensors" selected_lora = loras[selected_index] custom_model = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] client = Client("fffiloni/sd-xl-custom-model") result = client.predict( custom_model=custom_model, api_name="/load_model" ) weight_name = result[2]['value'] client = Client("fffiloni/sd-xl-custom-model") prompt = trigger_word+". "+prompt+". "+style_prompt result = client.predict( custom_model=custom_model, weight_name=weight_name, prompt=prompt, inf_steps=inf_steps, guidance_scale=guidance_scale, width=width, height=height, seed=seed, lora_weight=lora_weight, api_name="/infer" ) new_result = result + (prompt, ) return new_result css=""" #col-container{ margin: 0 auto; max-width: 720px; text-align: left; } div#warning-duplicate { background-color: #ebf5ff; padding: 0 16px 16px; margin: 20px 0; } div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { color: #0f4592!important; } div#warning-duplicate strong { color: #0f4592; } p.actions { display: flex; align-items: center; margin: 20px 0; } div#warning-duplicate .actions a { display: inline-block; margin-right: 10px; } button#load_model_btn{ height: 46px; } #status_info{ font-size: 0.9em; } .custom-color { color: #030303 !important; } """ with gr.Blocks(css=css) as demo: gr.Markdown("# lichorosario LoRA Portfolio") gr.Markdown( "### This is my portfolio.\n" "**Note**: Generation quality may vary. For best results, adjust the parameters.\n" "Special thanks to [@artificialguybr](https://huggingface.co/artificialguybr) and [@fffiloni](https://huggingface.co/fffiloni)." ) with gr.Row(): with gr.Column(scale=2): prompt_in = gr.Textbox( label="Your Prompt", info = "Dont' forget to include your trigger word if necessary" ) style_prompt_in = gr.Textbox( label="Your Style Prompt" ) selected_info = gr.Markdown("") used_prompt = gr.Textbox( label="Used prompt" ) with gr.Column(scale=1): gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=2 ) with gr.Column(elem_id="col-container"): with gr.Accordion("Advanced Settings", open=False): with gr.Row(): inf_steps = gr.Slider( label="Inference steps", minimum=12, maximum=50, step=1, value=25 ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=50.0, step=0.1, value=7.5 ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=2048, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=2048, step=32, value=1024, ) with gr.Row(): seed = gr.Slider( label="Seed", info = "-1 denotes a random seed", minimum=-1, maximum=423538377342, step=1, value=-1 ) last_used_seed = gr.Number( label = "Last used seed", info = "the seed used in the last generation", ) lora_weight = gr.Slider( label="LoRa weigth", minimum=0.0, maximum=1.0, step=0.01, value=1.0 ) submit_btn = gr.Button("Submit") image_out = gr.Image(label="Image output") selected_index = gr.State(None) submit_btn.click( fn = infer, inputs = [selected_index, prompt_in, style_prompt_in, inf_steps, guidance_scale, width, height, seed, lora_weight], outputs = [image_out, last_used_seed, used_prompt] ) def update_selection(evt: gr.SelectData): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" return ( gr.update(placeholder=new_placeholder), updated_text, evt.index ) gallery.select(update_selection, outputs=[prompt_in, selected_info, selected_index]) demo.launch()