import os import uuid import gradio as gr import json from gradio_client import Client, handle_file from gradio_imageslider import ImageSlider from PIL import Image from huggingface_hub import InferenceClient from loadimg import load_img with open('loras.json', 'r') as f: loras = json.load(f) job = None # Verificar las URLs de los modelos custom_model_url = "https://fffiloni-sd-xl-custom-model.hf.space" tile_upscaler_url = "https://gokaygokay-tileupscalerv2.hf.space" client_custom_model = None client_tile_upscaler = None # try: # client_custom_model = Client(custom_model_url) # print(f"Loaded custom model from {custom_model_url}") # except ValueError as e: # print(f"Failed to load custom model: {e}") # try: # client_tile_upscaler = Client(tile_upscaler_url) # print(f"Loaded custom model from {tile_upscaler_url}") # except ValueError as e: # print(f"Failed to load custom model: {e}") def infer(selected_index, prompt, style_prompt, inf_steps, guidance_scale, width, height, seed, lora_weight, progress=gr.Progress(track_tqdm=True)): try: global job if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") selected_lora = loras[selected_index] custom_model = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] global client_custom_model if client_custom_model is None: try: client_custom_model = Client(custom_model_url) print(f"Loaded custom model from {custom_model_url}") except ValueError as e: print(f"Failed to load custom model: {e}") client_custom_model = None raise gr.Error("Failed to load client for " + custom_model_url) try: result = client_custom_model.submit( custom_model=custom_model, api_name="/load_model" ) except ValueError as e: raise gr.Error(e) weight_name = result.result()[2]['value'] if trigger_word and prompt.startswith(trigger_word): prompt = prompt[len(trigger_word+'. '):].lstrip() if style_prompt and prompt.endswith(style_prompt): prompt = prompt[:-len('. '+style_prompt)].rstrip() prompt_arr = [trigger_word, prompt, style_prompt] prompt = '. '.join([element.strip() for element in prompt_arr if element.strip() != '']) try: job = client_custom_model.submit( custom_model=custom_model, weight_name=weight_name, prompt=prompt, inf_steps=inf_steps, guidance_scale=guidance_scale, width=width, height=height, seed=seed, lora_weight=lora_weight, api_name="/infer" ) result = job.result() except ValueError as e: raise gr.Error(e) generated_image_path = result[0] # Esto puede necesitar ser ajustado basado en la estructura real de result used_seed = result[1] # Esto puede necesitar ser ajustado basado en la estructura real de result used_prompt = prompt # El prompt usado es simplemente el prompt procesado generated_image_path = load_img(generated_image_path, output_type="str") return generated_image_path, used_seed, used_prompt except Exception as e: gr.Warning("Error: " + str(e)) def cancel_infer(): global job if job: job.cancel() return "Job has been cancelled" return "No job to cancel" def update_selection(evt: gr.SelectData): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" return ( gr.update(placeholder=new_placeholder), updated_text, evt.index ) def resize_image(image_path, reduction_factor): image = Image.open(image_path) width, height = image.size new_size = (width // reduction_factor, height // reduction_factor) resized_image = image.resize(new_size) return resized_image def save_image(image): unique_filename = f"resized_image_{uuid.uuid4().hex}.png" image.save(unique_filename) return unique_filename def upscale_image(image, resolution, num_inference_steps, strength, hdr, guidance_scale, controlnet_strength, scheduler_name, reduce_factor): global client_tile_upscaler # image = image[1] try: client_tile_upscaler = Client(tile_upscaler_url) print(f"Loaded custom model from {tile_upscaler_url}") except ValueError as e: print(f"Failed to load custom model: {e}") client_tile_upscaler = None raise gr.Error("Failed to load client for " + tile_upscaler_url) if (reduce_factor > 1): image = resize_image(image, reduce_factor) image = save_image(image) try: print(type(image), type(resolution), type(num_inference_steps), type(strength), type(hdr), type(guidance_scale), type(controlnet_strength), type(scheduler_name), type(reduce_factor)) print(f"Image: {image}") print(f"Resolution: {resolution}") print(f"Number of Inference Steps: {num_inference_steps}") print(f"Strength: {strength}") print(f"HDR: {hdr}") print(f"Guidance Scale: {guidance_scale}") print(f"ControlNet Strength: {controlnet_strength}") print(f"Scheduler Name: {scheduler_name}") print(f"Reduce Factor: {reduce_factor}") job = client_tile_upscaler.submit( param_0=handle_file(image), param_1=resolution, param_2=num_inference_steps, param_3=strength, param_4=hdr, param_5=guidance_scale, param_6=controlnet_strength, param_7=scheduler_name, api_name="/wrapper" ) result = job.result() except ValueError as e: raise gr.Error(e) return [image, result] def refine_image(apply_refiner, image, model ,prompt, negative_prompt, num_inference_steps, guidance_scale, seed, strength): if (not apply_refiner): return image client = InferenceClient() refined_image = client.image_to_image( handle_file(image), prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed, model=model, strength=strength ) return refined_image css=""" """ with gr.Blocks(css=css) as demo: gr.Markdown("# lichorosario LoRA Portfolio") gr.Markdown( "### This is my portfolio.\n" "**Note**: Generation quality may vary. For best results, adjust the parameters.\n" "Special thanks to [@artificialguybr](https://huggingface.co/artificialguybr) and [@fffiloni](https://huggingface.co/fffiloni).\n" "Based on [https://huggingface.co/spaces/fffiloni/sd-xl-custom-model](https://huggingface.co/spaces/fffiloni/sd-xl-custom-model) and [https://huggingface.co/spaces/gokaygokay/TileUpscalerV2](https://huggingface.co/spaces/gokaygokay/TileUpscalerV2)" ) with gr.Row(): with gr.Column(scale=2): prompt_in = gr.Textbox( label="Your Prompt", info="Don't forget to include your trigger word if necessary" ) style_prompt_in = gr.Textbox( label="Your Style Prompt" ) selected_info = gr.Markdown("") used_prompt = gr.Textbox( label="Used prompt" ) with gr.Column(elem_id="col-container"): with gr.Accordion("Advanced Settings", open=False): with gr.Row(): inf_steps = gr.Slider( label="Inference steps", minimum=3, maximum=150, step=1, value=25 ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=50.0, step=0.1, value=12 ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=3072, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=3072, step=32, value=512, ) examples = [ [1024,512], [2048,512], [3072, 512] ] gr.Examples( label="Presets", examples=examples, inputs=[width, height], outputs=[] ) with gr.Row(): seed = gr.Slider( label="Seed", info="-1 denotes a random seed", minimum=-1, maximum=423538377342, step=1, value=-1 ) last_used_seed = gr.Number( label="Last used seed", info="the seed used in the last generation", ) lora_weight = gr.Slider( label="LoRa weight", minimum=0.0, maximum=1.0, step=0.01, value=1.0 ) with gr.Group(): apply_refiner = gr.Checkbox(label="Apply refiner", value=False) with gr.Accordion("Refiner params", open=False) as refiner_params: refiner_prompt = gr.Textbox(lines=3, label="Prompt") refiner_negative_prompt = gr.Textbox(lines=3, label="Negative Prompt") refiner_strength = gr.Slider( label="Strength", minimum=0, maximum=300, step=0.01, value=1 ) refiner_num_inference_steps = gr.Slider( label="Inference steps", minimum=3, maximum=300, step=1, value=25 ) refiner_guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=50.0, step=0.1, value=12 ) refiner_seed = gr.Slider( label="Seed", info="-1 denotes a random seed", minimum=-1, maximum=423538377342, step=1, value=-1 ) refiner_model = gr.Textbox(label="Model", value="stabilityai/stable-diffusion-xl-refiner-1.0") apply_refiner.change( fn=lambda x: gr.update(visible=x), inputs=apply_refiner, outputs=refiner_params, queue=False, api_name=False, ) with gr.Column(scale=1): gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=2, height="100%" ) submit_btn = gr.Button("Submit") cancel_btn = gr.Button("Cancel") with gr.Row(): with gr.Column(): generated_image = gr.Image(label="Image / Refined Image", type="filepath") enhace_button = gr.Button("Enhance Image") with gr.Column(): output_slider = ImageSlider(label="Before / After", type="filepath", show_download_button=False) with gr.Accordion("Enhacer params", open=False): upscale_reduce_factor = gr.Slider(minimum=1, maximum=10, step=1, label="Reduce Factor", info="1/n") upscale_resolution = gr.Slider(minimum=128, maximum=2048, value=1024, step=128, label="Resolution", info="Image width") upscale_num_inference_steps = gr.Slider(minimum=1, maximum=150, value=50, step=1, label="Number of Inference Steps") upscale_strength = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label="Strength", info="Higher values give more detail") upscale_hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect") upscale_guidance_scale = gr.Slider(minimum=0, maximum=20, value=12, step=0.5, label="Guidance Scale") upscale_controlnet_strength = gr.Slider(minimum=0.0, maximum=2.0, value=0.75, step=0.05, label="ControlNet Strength") upscale_scheduler_name = gr.Dropdown( choices=["DDIM", "DPM++ 3M SDE Karras", "DPM++ 3M Karras"], value="DDIM", label="Scheduler" ) selected_index = gr.State(None) submit_btn.click( fn=infer, inputs=[selected_index, prompt_in, style_prompt_in, inf_steps, guidance_scale, width, height, seed, lora_weight], outputs=[generated_image, last_used_seed, used_prompt] ).then(refine_image, [apply_refiner, generated_image, refiner_model, refiner_prompt, refiner_negative_prompt, refiner_num_inference_steps, refiner_guidance_scale, refiner_seed, refiner_strength], generated_image ) cancel_btn.click( fn=cancel_infer, outputs=[] ) def clear_output(image_slider): return None enhace_button.click( fn=clear_output, inputs=[output_slider], outputs=[output_slider] ).then( upscale_image, [generated_image, upscale_resolution, upscale_num_inference_steps, upscale_strength, upscale_hdr, upscale_guidance_scale, upscale_controlnet_strength, upscale_scheduler_name, upscale_reduce_factor], output_slider ) gallery.select(update_selection, outputs=[prompt_in, selected_info, selected_index]) demo.launch(show_error=True)