Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
import ipywidgets as widgets
|
5 |
from pathlib import Path
|
6 |
from transformers import AutoConfig, AutoTokenizer
|
7 |
from optimum.intel.openvino import OVModelForCausalLM
|
@@ -18,7 +17,6 @@ import requests
|
|
18 |
|
19 |
# Define the model loading function (same as in your notebook)
|
20 |
def convert_to_int4(model_id, model_configuration, enable_awq=False):
|
21 |
-
# Model conversion logic here (same as in notebook)
|
22 |
compression_configs = {
|
23 |
"qwen2.5-0.5b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
|
24 |
"default": {"sym": False, "group_size": 128, "ratio": 0.8},
|
@@ -45,10 +43,8 @@ def convert_to_int4(model_id, model_configuration, enable_awq=False):
|
|
45 |
os.system(export_command)
|
46 |
return int4_model_dir
|
47 |
|
48 |
-
|
49 |
# Model and tokenizer loading
|
50 |
def load_model(model_dir, device):
|
51 |
-
# Load model using OpenVINO
|
52 |
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
|
53 |
core = ov.Core()
|
54 |
model_name = model_configuration["model_id"]
|
@@ -64,7 +60,7 @@ def load_model(model_dir, device):
|
|
64 |
|
65 |
return ov_model, tok
|
66 |
|
67 |
-
#
|
68 |
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
|
69 |
input_ids = convert_history_to_token(history)
|
70 |
if input_ids.shape[1] > 2000:
|
@@ -99,23 +95,56 @@ def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id)
|
|
99 |
history[-1][1] = partial_text
|
100 |
yield history
|
101 |
|
102 |
-
# Gradio interface
|
103 |
def create_gradio_interface():
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# Choose model based on the selected language
|
108 |
-
model_configuration = SUPPORTED_LLM_MODELS[model_language[0]][model_id.value]
|
109 |
-
|
110 |
-
# Prepare model (convert to INT4, etc.)
|
111 |
-
int4_model_dir = convert_to_int4(model_id.value, model_configuration)
|
112 |
-
|
113 |
-
# Load model and tokenizer
|
114 |
-
device = device_widget("CPU")
|
115 |
-
ov_model, tok = load_model(int4_model_dir, device)
|
116 |
|
117 |
-
#
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
return demo
|
121 |
|
@@ -123,4 +152,3 @@ def create_gradio_interface():
|
|
123 |
if __name__ == "__main__":
|
124 |
app = create_gradio_interface()
|
125 |
app.launch(debug=True, share=True) # share=True for public access
|
126 |
-
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
|
|
4 |
from pathlib import Path
|
5 |
from transformers import AutoConfig, AutoTokenizer
|
6 |
from optimum.intel.openvino import OVModelForCausalLM
|
|
|
17 |
|
18 |
# Define the model loading function (same as in your notebook)
|
19 |
def convert_to_int4(model_id, model_configuration, enable_awq=False):
|
|
|
20 |
compression_configs = {
|
21 |
"qwen2.5-0.5b-instruct": {"sym": True, "group_size": 128, "ratio": 1.0},
|
22 |
"default": {"sym": False, "group_size": 128, "ratio": 0.8},
|
|
|
43 |
os.system(export_command)
|
44 |
return int4_model_dir
|
45 |
|
|
|
46 |
# Model and tokenizer loading
|
47 |
def load_model(model_dir, device):
|
|
|
48 |
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
|
49 |
core = ov.Core()
|
50 |
model_name = model_configuration["model_id"]
|
|
|
60 |
|
61 |
return ov_model, tok
|
62 |
|
63 |
+
# Gradio Interface for Bot interaction
|
64 |
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
|
65 |
input_ids = convert_history_to_token(history)
|
66 |
if input_ids.shape[1] > 2000:
|
|
|
95 |
history[-1][1] = partial_text
|
96 |
yield history
|
97 |
|
98 |
+
# Define a Gradio interface for user interaction
|
99 |
def create_gradio_interface():
|
100 |
+
# Dropdown for selecting model language and model ID
|
101 |
+
model_language = list(SUPPORTED_LLM_MODELS.keys()) # List of model languages
|
102 |
+
model_id = gr.Dropdown(choices=model_language, value=model_language[0], label="Model Language")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
# Once model language is selected, show the respective model IDs
|
105 |
+
def update_model_ids(model_language):
|
106 |
+
model_ids = list(SUPPORTED_LLM_MODELS[model_language].keys())
|
107 |
+
return gr.Dropdown.update(choices=model_ids, value=model_ids[0])
|
108 |
+
|
109 |
+
model_id_selector = gr.Dropdown(choices=model_language, value=model_language[0], label="Model ID")
|
110 |
+
model_id_selector.change(update_model_ids, inputs=model_language, outputs=model_id_selector)
|
111 |
+
|
112 |
+
# Set up a checkbox for enabling AWQ compression
|
113 |
+
enable_awq = gr.Checkbox(value=False, label="Enable AWQ for Compression")
|
114 |
+
|
115 |
+
# Initialize model selection based on language and ID
|
116 |
+
def load_model_on_select(model_language, model_id, enable_awq):
|
117 |
+
model_configuration = SUPPORTED_LLM_MODELS[model_language][model_id]
|
118 |
+
int4_model_dir = convert_to_int4(model_id, model_configuration, enable_awq)
|
119 |
+
|
120 |
+
# Load the model and tokenizer
|
121 |
+
device = device_widget("CPU") # or any device you want to use
|
122 |
+
ov_model, tok = load_model(int4_model_dir, device)
|
123 |
+
|
124 |
+
# Return the loaded model and tokenizer
|
125 |
+
return ov_model, tok
|
126 |
+
|
127 |
+
# Connect model selection UI to load model dynamically
|
128 |
+
load_button = gr.Button("Load Model")
|
129 |
+
load_button.click(load_model_on_select, inputs=[model_language, model_id, enable_awq], outputs=[gr.Textbox(label="Model Status")])
|
130 |
+
|
131 |
+
# Create the Gradio chatbot interface
|
132 |
+
chatbot = gr.Chatbot()
|
133 |
+
|
134 |
+
# Parameters for bot generation
|
135 |
+
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, label="Temperature", value=0.7)
|
136 |
+
top_p = gr.Slider(minimum=0, maximum=1, step=0.1, label="Top-p", value=0.9)
|
137 |
+
top_k = gr.Slider(minimum=0, maximum=50, step=1, label="Top-k", value=50)
|
138 |
+
repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.1, label="Repetition Penalty", value=1.0)
|
139 |
+
|
140 |
+
# Run the Gradio interface
|
141 |
+
demo = gr.Interface(
|
142 |
+
fn=bot,
|
143 |
+
inputs=[chatbot, temperature, top_p, top_k, repetition_penalty],
|
144 |
+
outputs=[chatbot],
|
145 |
+
title="OpenVINO Chatbot",
|
146 |
+
live=True
|
147 |
+
)
|
148 |
|
149 |
return demo
|
150 |
|
|
|
152 |
if __name__ == "__main__":
|
153 |
app = create_gradio_interface()
|
154 |
app.launch(debug=True, share=True) # share=True for public access
|
|