phi-4 / app.py
likewendy's picture
code
90aa4a9
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
import os
from threading import Thread
os.system("rm -rf /data-nvme/zerogpu-offload/*")
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
model = AutoModelForCausalLM.from_pretrained(
"NyxKrage/Microsoft_Phi-4",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("NyxKrage/Microsoft_Phi-4")
streamer = TextIteratorStreamer(tokenizer)
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
seed,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Convert messages to the format expected by the model
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
torch.random.manual_seed(seed)
generation_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
streamer=streamer,
top_p=top_p,
return_full_text=False,
do_sample=True,
)
response = ""
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Print the generated text in real-time
for new_text in streamer:
response += new_text
yield response
with gr.Blocks() as demo:
with gr.Row():
gr.LoginButton(min_width=100)
gr.Markdown("""
This is the space I built.
As of 2025/1/7, this is the first phi-4 space.
If this helps you, and if you have enough money, can you give me 1$? I am facing a financial crisis.
If you do this, I will pass on the kindness.
This is my bank card number:5592921230414708
Thank you!!
""")
with gr.Row():
with gr.Column():
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
seed = gr.Slider(minimum=0, maximum=20091114, value=42, step=1, label="Seed")
with gr.Column():
gr.ChatInterface(
respond,
additional_inputs=[system_message, max_tokens, temperature, top_p, seed],
)
if __name__ == "__main__":
demo.launch()