|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import gradio as gr |
|
import os |
|
from threading import Thread |
|
|
|
os.system("rm -rf /data-nvme/zerogpu-offload/*") |
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"NyxKrage/Microsoft_Phi-4", |
|
device_map="cuda", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("NyxKrage/Microsoft_Phi-4") |
|
|
|
streamer = TextIteratorStreamer(tokenizer) |
|
|
|
@spaces.GPU |
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
seed, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda") |
|
|
|
torch.random.manual_seed(seed) |
|
|
|
generation_kwargs = dict( |
|
input_ids=input_ids, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
streamer=streamer, |
|
top_p=top_p, |
|
return_full_text=False, |
|
do_sample=True, |
|
) |
|
|
|
response = "" |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
for new_text in streamer: |
|
response += new_text |
|
yield response |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
gr.LoginButton(min_width=100) |
|
gr.Markdown(""" |
|
This is the space I built. |
|
As of 2025/1/7, this is the first phi-4 space. |
|
If this helps you, and if you have enough money, can you give me 1$? I am facing a financial crisis. |
|
If you do this, I will pass on the kindness. |
|
This is my bank card number:5592921230414708 |
|
Thank you!! |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message") |
|
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") |
|
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
seed = gr.Slider(minimum=0, maximum=20091114, value=42, step=1, label="Seed") |
|
|
|
with gr.Column(): |
|
gr.ChatInterface( |
|
respond, |
|
additional_inputs=[system_message, max_tokens, temperature, top_p, seed], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |