Spaces:
Runtime error
Runtime error
File size: 9,341 Bytes
61f6c42 c473c85 61f6c42 c4731f0 c473c85 c4731f0 c473c85 dfa545b 61f6c42 dfa545b 61f6c42 dfa545b 61f6c42 dfa545b c473c85 ce20c03 c473c85 ce20c03 c473c85 61f6c42 dfa545b 61f6c42 dfa545b 61f6c42 ce20c03 61f6c42 ce20c03 61f6c42 d6201db 61f6c42 c473c85 61f6c42 dfa545b 61f6c42 c473c85 d6201db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
from dash import html, dcc, callback, Input, Output, State
from dash.exceptions import PreventUpdate
from typing import Tuple, Any, Dict, Optional
from functools import partial
from io import BytesIO
from PIL import Image
from pillow_heif import register_heif_opener
from larvaecount.gradient import (
component_thesh,
component_filter_thresh,
contour_thresh
)
from larvaecount.ui.ui_utils import (
get_cc_ui,
get_cc_filter_ui,
get_contour_ui,
display_slider_value,
get_results_container
)
import plotly.express as px
import base64
import dash
import dash_bootstrap_components as dbc
import numpy as np
register_heif_opener()
dash.register_page(__name__, path = "/")
UPLOAD_HEIGHT = "25vh"
COUNT_FUNCS = {
"Gradient CC": get_cc_ui,
"Gradient CC w/ Filter": get_cc_filter_ui,
"Gradient Contour w/ Filter": get_contour_ui
}
DEFAULT_STRATEGY = "Gradient CC w/ Filter"
def get_initial_upload_container() -> dbc.Container:
return dcc.Upload(
id = "upload-data",
children = dbc.Container(
children = [
html.Img(
src = "assets/camera.png",
alt = "camera-image",
className = "h-50"
),
html.H2("Drag and Drop or Select Image File")
],
class_name = "w-100 d-flex flex-column justify-content-center align-items-center",
style = {
"height": UPLOAD_HEIGHT
}
)
)
def get_new_upload_container(
image_b64: str,
file_name: str
) -> dbc.Container:
decoded_bytes = base64.b64decode(image_b64)
image_data = BytesIO(decoded_bytes)
pil_img = Image.open(image_data)
img = np.array(pil_img)
image_fig = px.imshow(
img,
height = 750,
)
return dbc.Container(
children = [
html.H3(
children = file_name,
className = "p-2 text-start",
),
dcc.Graph(
figure = image_fig,
),
dbc.Container(
children = dcc.Upload(
children = dbc.Button(
children = "Upload New Image",
color = "secondary"
),
id = "upload-data"
),
class_name = "w-100 pb-4 d-flex flex-row justify-content-center align-items-center"
)
]
)
layout = dbc.Container(
children = [
dbc.Container(
children = dcc.Loading(
children = get_initial_upload_container(),
id = "image-upload-container",
color = "black"
),
class_name = "m-0 p-0 border border-dark"
),
dcc.Store(
id = "img-data-store",
storage_type = "memory"
),
dbc.Modal(
children = [
dbc.ModalHeader(
dbc.ModalTitle("Error Processing Image File")
),
dbc.ModalBody(
children = "",
id = "upload-modal-content"
),
],
is_open = False,
id = "upload-modal"
),
html.H4("Select Counting Strategy", className = "text-start mt-3"),
dcc.Dropdown(
options = [name for name in COUNT_FUNCS],
value = DEFAULT_STRATEGY,
id = "strat-picker",
className = "my-2 w-100"
),
dbc.Container(
id = "count-ui-container",
className = "mt-1 mx-0 px-0"
),
dcc.Loading(
children = dbc.Container(
id = "count-res-container",
className = "mt-4 mx-0 px-0"
),
type = "default",
color = "black"
)
],
class_name = "text-center mt-3"
)
@callback(
Output("image-upload-container", "children"),
Output("img-data-store", "data"),
Output("upload-modal-content", "children"),
Output("upload-modal", "is_open"),
Input("upload-data", "contents"),
State("upload-data", "filename"),
State("image-upload-container", "children"),
State("img-data-store", "data")
)
def on_image_upload(
upload_image_data: str,
upload_image_name: str,
curr_upload_chidren: Any,
curr_img_store_data: Dict,
) -> Tuple[dbc.Container, Dict, str, bool]:
if not upload_image_data:
raise PreventUpdate
try:
content_type, content_string = upload_image_data.split(',')
next_children = get_new_upload_container(content_string, upload_image_name)
return (
next_children,
{"img": content_string},
"",
False
)
except Exception as e:
return (
curr_upload_chidren,
curr_img_store_data,
str(e),
True
)
@callback(
Output("count-ui-container", "children"),
Input("strat-picker", "value")
)
def on_select_strat(
curr_strat: str
) -> Optional[dbc.Container]:
if curr_strat not in COUNT_FUNCS:
return None
ui_fun = COUNT_FUNCS[curr_strat]
return ui_fun()
@callback(
Output("count-res-container", "children", allow_duplicate = True),
Input("count-cc", "n_clicks"),
State("select-cc-color-thresh", "value"),
State("select-cc-avg-area", "value"),
State("select-cc-max-eggs", "value"),
State("img-data-store", "data"),
allow_duplicate = True,
prevent_initial_call = True
)
def on_count_cc(
n_clicks: int,
color_thresh: int,
avg_area: int,
max_eggs: Optional[int],
image_store: Dict,
) -> dbc.Container:
if not n_clicks:
return None
decoded_bytes = base64.b64decode(image_store["img"])
image_data = BytesIO(decoded_bytes)
pil_img = Image.open(image_data)
img = np.array(pil_img)
color_thresh = int(color_thresh)
avg_area = int(avg_area)
if max_eggs:
max_eggs = int(max_eggs)
results = component_thesh(
img,
color_thresh = color_thresh,
avg_area = avg_area,
max_eggs = max_eggs
)
return get_results_container(results)
@callback(
Output("count-res-container", "children", allow_duplicate = True),
Input("count-cc-filter", "n_clicks"),
State("select-cc-filter-color-thresh", "value"),
State("select-cc-filter-avg-area", "value"),
State("select-cc-filter-max-eggs", "value"),
State("select-cc-kernel-width", "value"),
State("select-cc-kernel-height", "value"),
State("img-data-store", "data"),
prevent_initial_call = True
)
def on_count_cc(
n_clicks: int,
color_thresh: int,
avg_area: int,
max_eggs: Optional[int],
kernel_width: int,
kernel_height: int,
image_store: Dict,
) -> dbc.Container:
if not n_clicks:
return None
decoded_bytes = base64.b64decode(image_store["img"])
image_data = BytesIO(decoded_bytes)
pil_img = Image.open(image_data)
img = np.array(pil_img)
color_thresh = int(color_thresh)
avg_area = int(avg_area)
kernel_width = int(kernel_width)
kernel_height = int(kernel_height)
if max_eggs:
max_eggs = int(max_eggs)
results = component_filter_thresh(
img,
color_thresh = color_thresh,
avg_area = avg_area,
kernal_size = (kernel_width, kernel_height),
max_eggs = max_eggs
)
return get_results_container(results)
@callback(
Output("count-res-container", "children", allow_duplicate = True),
Input("count-contour", "n_clicks"),
State("select-contour-color-thresh", "value"),
State("select-contour-avg-area", "value"),
State("select-contour-max-eggs", "value"),
State("select-contour-width", "value"),
State("select-contour-height", "value"),
State("img-data-store", "data"),
prevent_initial_call = True
)
def on_count_contour(
n_clicks: int,
color_thresh: int,
avg_area: int,
max_eggs: Optional[int],
kernel_width: int,
kernel_height: int,
image_store: Dict,
) -> dbc.Container:
if not n_clicks:
return None
decoded_bytes = base64.b64decode(image_store["img"])
image_data = BytesIO(decoded_bytes)
pil_img = Image.open(image_data)
img = np.array(pil_img)
color_thresh = int(color_thresh)
avg_area = int(avg_area)
kernel_width = int(kernel_width)
kernel_height = int(kernel_height)
if max_eggs:
max_eggs = int(max_eggs)
results = contour_thresh(
img,
color_thresh = color_thresh,
avg_area = avg_area,
kernal_size = (kernel_width, kernel_height),
max_eggs = max_eggs
)
return get_results_container(results)
callback(
Output("display-cc-color-thresh", "children"),
Input("select-cc-color-thresh", "value")
)(partial(display_slider_value, "Color Threshold"))
callback(
Output("display-cc-filter-color-thresh", "children"),
Input("select-cc-filter-color-thresh", "value")
)(partial(display_slider_value, "Color Threshold"))
callback(
Output("display-contour-color-thresh", "children"),
Input("select-contour-color-thresh", "value")
)(partial(display_slider_value, "Color Threshold"))
|