File size: 10,574 Bytes
8133f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e7d92
8133f69
18e7d92
8133f69
 
 
 
 
 
 
 
 
 
 
 
18e7d92
8133f69
 
 
 
 
 
 
 
 
 
 
18e7d92
8133f69
 
 
 
 
 
18e7d92
 
 
8133f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e7d92
8133f69
 
 
 
 
18e7d92
8133f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e7d92
8133f69
 
 
 
 
18e7d92
8133f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e7d92
8133f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import spaces
import gradio as gr
import torch

import random
import os
from typing import List, Tuple

from config_generator import generate_complete_game
from dataset import get_processor, joint_speaker_input, joint_listener_input, get_index_to_token
from models import get_model

css="""
.radio-group .wrap {
    display: grid;
    grid-template-columns: repeat(5, 1fr);
    grid-template-rows: repeat(5, 1fr);
    width: 100%;
    height: 100%
}
"""

def initialize_game() -> List[List[str]]:
    context_dicts = [generate_complete_game() for _ in range(2)]

    roles = ["speaker"] * 3 + ["listener"] * 3
    speaker_images = []
    listener_images = []
    targets = []

    for context_dict in context_dicts:
        for i in range(3):
            speaker_images.append(context_dict["speaker_context"])
            listener_images.append(context_dict["listener_context"])
            targets.append(context_dict["targets"][i])

    return list(zip(speaker_images, listener_images, targets, roles))

@spaces.GPU
def get_model_response(
        model, adapter_name, processor, index_to_token, role: str, 
        image_paths: List[str], user_message: str = "", target_image: str = ""
) -> str:    
    model.model.set_adapter(adapter_name)
    print(model.model.active_adapter)
    if role == "speaker":
        img_dir = "tangram_pngs"
        input_tokens, attn_mask, images, image_attn_mask, label = joint_speaker_input(
            processor, image_paths, target_image, model.get_listener().device
        )
        print("Hi")
        with torch.no_grad():
            image_paths = [image_paths]
            captions, _, _, _, _ = model.generate(
                images, input_tokens, attn_mask, image_attn_mask, label,
                image_paths, processor, img_dir, index_to_token,
                max_steps=30, sampling_type="nucleus", temperature=0.7,
                top_k=50, top_p=1, repetition_penalty=1, num_samples=5
            )
        print("There")
        response = captions[0]
    else:  # listener
        images, l_input_tokens, l_attn_mask, l_image_attn_mask, s_input_tokens, s_attn_mask, \
            s_image_attn_mask, s_target_mask, s_target_label = joint_listener_input(
                processor, image_paths, user_message, model.get_listener().device
            )

        with torch.no_grad():
            # Forward
            _, _, joint_log_probs = model.comprehension_side([
                images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
                s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label,
            ])
            target_idx = joint_log_probs[0].argmax().item()
            response = image_paths[target_idx]

    return response

def interaction(model, processor, index_to_token, model_iteration: str) -> Tuple[List[str], List[str]]:
    image_role_pairs = initialize_game()
    conversation = []    
    turn = 0
    num_correct = 0
    human_role = None
    adapter_name = "initial" if model_iteration == "Initial System" else "final"
    internal_model = model

    for speaker_image, listener_image, target_image, model_role in image_role_pairs:
        acc_message = f"{num_correct}/{turn}"
        if model_role == "speaker":
            human_role = "Listener"            
            turn += 1
            turn_message = f"{turn}/6"  
            human_context = listener_image
            model_context = speaker_image
            target_idx = human_context.index(target_image)

            conversation.extend([
                f"TURN: {turn}/6",
                f"Guess the target image given the speaker's description. ",
            ])
            model_message = get_model_response(internal_model, adapter_name, processor, index_to_token, model_role, model_context, target_image=target_image)            
            conversation.append(f"Model: {model_message}")
            conversation.append("You: The target is Image ")
            user_message = yield human_context, conversation, human_role, turn_message, acc_message
            
            conversation[-1] += f"{user_message}"
            if int(user_message) == target_idx + 1:
                conversation.append("Correct!\n")
                num_correct += 1
            else:
                conversation.append(f"Incorrect!\n")
        else:  
            # listener
            human_role = "Speaker"
            turn += 1
            turn_message = f"{turn}/6"    
            human_context = speaker_image
            model_context = listener_image
            target_idx = human_context.index(target_image)        

            conversation.extend([
                f"TURN: {turn}/6",
                f"Generate a description for the target image. Your target is Image {target_idx + 1}",
            ])

            user_message = yield human_context, conversation, human_role, turn_message, acc_message
            conversation.append(f"You: {user_message}")
            model_message = get_model_response(internal_model, adapter_name, processor, index_to_token, model_role, model_context, user_message=user_message)
            model_idx = human_context.index(model_message)
            
            if int(model_idx) == int(target_idx):
                conversation.append("The model guessed correctly!\n")
                num_correct += 1
            else:
                conversation.append(f"The model guessed incorrectly.\n")

    acc_message = f"{num_correct}/{turn}"
    conversation.append("The game is over!")
    yield human_context, conversation, human_role, turn_message, acc_message

def create_app():
    with gr.Blocks(css=css) as app:
        gr.Markdown("# Tangram Reference Game")
        gr.Markdown(
            '### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\
            'you wish to play against our initial trained model ("Initial System") or our model at the end of deployment ("Final System") ' +\
            'and press the "Start Game" button. There will be 6 rounds of reference games. You will take on a "listener" or a "speaker" role at each round.'
        )

        gr.Markdown(
            '### In the speaker role, you will be assigned a target image. Your goal will be to describe this image (via a message in the textbox) ' +\
            'so that your partner can guess what it is.'
        )
        gr.Markdown(
            '### In the listener role, you will be given a description. Your goal will be ' +\
            'to select the image that the description best describes (by clicking on the relevant button).'
        )
        gr.Markdown(
            '### Press "Send" to submit your action in either role and make the game proceed.'
        )
        
        with gr.Row():
            model_iteration = gr.Radio(["Initial System", "Final System"], label="Model Iteration")
            start_btn = gr.Button("Start Game")

        with gr.Row():
            current_role = gr.Textbox(label="YOUR ROLE")
            current_turn = gr.Textbox(label="TURN")
            accuracy = gr.Textbox(label="FINAL ACCURACY")
            
        with gr.Row():
            image_output = gr.Gallery(
                label="CONTEXT", show_label=False, elem_id="gallery", 
                columns=5, rows=2, object_fit="contain", height="250px",
                allow_preview=False, container=True
            )
        
        with gr.Row():
            conversation_output = gr.Textbox(label="Interaction History")

            with gr.Column():
                user_input = gr.Textbox(label="Your Message as Speaker", interactive=False)
                radio_buttons = gr.Radio(
                    label="Your Guess as Listener",
                    elem_classes="radio-group",
                    choices=list(range(1, 11)),
                    interactive=False,
                )

        send_btn = gr.Button("Send")

        interaction_generator = None
        model = get_model()
        processor = get_processor()
        index_to_token = get_index_to_token()

        def start_interaction(model_iteration):
            if model_iteration is None:
                return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \
                    gr.update(interactive=False), gr.update(interactive=False)

            nonlocal interaction_generator
            nonlocal model
            nonlocal processor
            nonlocal index_to_token
            interaction_generator = interaction(model, processor, index_to_token, model_iteration)
            images, conversation, role, turn, acc_message = next(interaction_generator)
            human_listener = role == "Listener"
            return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, acc_message, \
                gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True)

        def send_message(message, radio_choice):
            nonlocal interaction_generator            
            if interaction_generator is None:
                return [], "Please start the interaction first.", "", gr.update(interactive=False), gr.update(interactive=False, value=None)
            
            try:
                user_output = message if radio_choice is None else radio_choice
                images, conversation, role, turn, acc_message = interaction_generator.send(user_output)
                human_listener = role == "Listener"
                return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, acc_message, \
                    gr.update(interactive=not human_listener, value=""), gr.update(interactive=human_listener, value=None), gr.update(interactive=True)
            except StopIteration:
                return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)

        start_btn.click(
            start_interaction, 
            inputs=[model_iteration], 
            outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input, radio_buttons, send_btn]
        )
        send_btn.click(send_message, inputs=[user_input, radio_buttons], outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input, radio_buttons, send_btn])

    return app

app = create_app()
app.launch()