Spaces:
Sleeping
Sleeping
File size: 11,666 Bytes
8133f69 18e7d92 8133f69 5f8e458 8133f69 5f8e458 8133f69 5f8e458 8133f69 5f8e458 8133f69 5f8e458 8133f69 5f8e458 8133f69 18e7d92 8133f69 18e7d92 8133f69 18e7d92 8133f69 18e7d92 8133f69 18e7d92 8133f69 5f8e458 8133f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import spaces
import gradio as gr
import torch
import random
import os
from typing import List, Tuple
from config_generator import generate_complete_game
from dataset import get_processor, joint_speaker_input, joint_listener_input, get_index_to_token
from models import get_model
css="""
.radio-group .wrap {
display: grid;
grid-template-columns: repeat(5, 1fr);
grid-template-rows: repeat(5, 1fr);
width: 100%;
height: 100%
}
"""
def initialize_game() -> List[List[str]]:
context_dicts = [generate_complete_game() for _ in range(2)]
roles = ["listener"] * 3 + ["speaker"] * 3
speaker_images = []
listener_images = []
targets = []
for context_dict in context_dicts:
for i in range(3):
speaker_images.append(context_dict["speaker_context"])
listener_images.append(context_dict["listener_context"])
targets.append(context_dict["targets"][i])
return list(zip(speaker_images, listener_images, targets, roles))
def get_model_response(
model, adapter_name, processor, index_to_token, role: str,
image_paths: List[str], user_message: str = "", target_image: str = ""
) -> str:
model.model.set_adapter(adapter_name)
if role == "speaker":
img_dir = "tangram_pngs"
print("Starting processing")
input_tokens, attn_mask, images, image_attn_mask, label = joint_speaker_input(
processor, image_paths, target_image, model.get_listener().device
)
image_paths = [image_paths]
print("Starting inference")
captions = get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths,
processor, img_dir, index_to_token)
print("Done")
response = captions[0]
else: # listener
print("Starting processing")
images, l_input_tokens, l_attn_mask, l_image_attn_mask, s_input_tokens, s_attn_mask, \
s_image_attn_mask, s_target_mask, s_target_label = joint_listener_input(
processor, image_paths, user_message, model.get_listener().device
)
print("Starting inference")
response = get_listener_response(
model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths
)
print("Done")
return response
@spaces.GPU(duration=20)
def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token):
model = model.cuda()
with torch.no_grad():
captions, _, _, _, _ = model.generate(
images.cuda(), input_tokens.cuda(), attn_mask.cuda(), image_attn_mask.cuda(), label.cuda(),
image_paths, processor, img_dir, index_to_token,
max_steps=30, sampling_type="nucleus", temperature=0.7,
top_k=50, top_p=1, repetition_penalty=1, num_samples=5
)
return captions
@spaces.GPU(duration=20)
def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths):
model = model.cuda()
with torch.no_grad():
_, _, joint_log_probs = model.comprehension_side([
images.cuda(), l_input_tokens.cuda(), l_attn_mask.cuda(), l_image_attn_mask.cuda(), index_to_token,
s_input_tokens.cuda(), s_attn_mask.cuda(), s_image_attn_mask.cuda(), s_target_mask.cuda(), s_target_label.cuda(),
])
target_idx = joint_log_probs[0].argmax().item()
response = image_paths[target_idx]
return response
def interaction(model, processor, index_to_token, model_iteration: str) -> Tuple[List[str], List[str]]:
image_role_pairs = initialize_game()
conversation = []
turn = 0
num_correct = 0
human_role = None
adapter_name = "initial" if model_iteration == "Initial System" else "final"
internal_model = model
for speaker_image, listener_image, target_image, model_role in image_role_pairs:
acc_message = f"{num_correct}/{turn}"
if model_role == "speaker":
human_role = "Listener"
turn += 1
turn_message = f"{turn}/6"
human_context = listener_image
model_context = speaker_image
target_idx = human_context.index(target_image)
conversation.extend([
f"TURN: {turn}/6",
f"Guess the target image given the speaker's description. ",
])
model_message = get_model_response(internal_model, adapter_name, processor, index_to_token, model_role, model_context, target_image=target_image)
conversation.append(f"Model: {model_message}")
conversation.append("You: The target is Image ")
user_message = yield human_context, conversation, human_role, turn_message, acc_message
conversation[-1] += f"{user_message}"
if int(user_message) == target_idx + 1:
conversation.append("Correct!\n")
num_correct += 1
else:
conversation.append(f"Incorrect!\n")
else:
# listener
human_role = "Speaker"
turn += 1
turn_message = f"{turn}/6"
human_context = speaker_image
model_context = listener_image
target_idx = human_context.index(target_image)
conversation.extend([
f"TURN: {turn}/6",
f"Generate a description for the target image. Your target is Image {target_idx + 1}",
])
user_message = yield human_context, conversation, human_role, turn_message, acc_message
conversation.append(f"You: {user_message}")
model_message = get_model_response(internal_model, adapter_name, processor, index_to_token, model_role, model_context, user_message=user_message)
model_idx = human_context.index(model_message)
if int(model_idx) == int(target_idx):
conversation.append("The model guessed correctly!\n")
num_correct += 1
else:
conversation.append(f"The model guessed incorrectly.\n")
acc_message = f"{num_correct}/{turn}"
conversation.append("The game is over!")
yield human_context, conversation, human_role, turn_message, acc_message
def create_app():
with gr.Blocks(css=css) as app:
gr.Markdown("# Tangram Reference Game")
gr.Markdown(
'### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\
'you wish to play against our initial trained model ("Initial System") or our model at the end of deployment ("Final System") ' +\
'and press the "Start Game" button. There will be 6 rounds of reference games. You will take on a "listener" or a "speaker" role at each round.'
)
gr.Markdown(
'### In the speaker role, you will be assigned a target image. Your goal will be to describe this image (via a message in the textbox) ' +\
'so that your partner can guess what it is.'
)
gr.Markdown(
'### In the listener role, you will be given a description. Your goal will be ' +\
'to select the image that the description best describes (by clicking on the relevant button).'
)
gr.Markdown(
'### Press "Send" to submit your action in either role and make the game proceed.'
)
with gr.Row():
model_iteration = gr.Radio(["Initial System", "Final System"], label="Model Iteration")
start_btn = gr.Button("Start Game")
with gr.Row():
current_role = gr.Textbox(label="YOUR ROLE")
current_turn = gr.Textbox(label="TURN")
accuracy = gr.Textbox(label="FINAL ACCURACY")
with gr.Row():
image_output = gr.Gallery(
label="CONTEXT", show_label=False, elem_id="gallery",
columns=5, rows=2, object_fit="contain", height="250px",
allow_preview=False, container=True
)
with gr.Row():
conversation_output = gr.Textbox(label="Interaction History")
with gr.Column():
user_input = gr.Textbox(label="Your Message as Speaker", interactive=False)
radio_buttons = gr.Radio(
label="Your Guess as Listener",
elem_classes="radio-group",
choices=list(range(1, 11)),
interactive=False,
)
send_btn = gr.Button("Send")
interaction_generator = None
model = get_model()
processor = get_processor()
index_to_token = get_index_to_token()
print("Heyo!")
def start_interaction(model_iteration):
if model_iteration is None:
return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \
gr.update(interactive=False), gr.update(interactive=False)
nonlocal interaction_generator
nonlocal model
nonlocal processor
nonlocal index_to_token
interaction_generator = interaction(model, processor, index_to_token, model_iteration)
images, conversation, role, turn, acc_message = next(interaction_generator)
human_listener = role == "Listener"
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, acc_message, \
gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True)
def send_message(message, radio_choice):
nonlocal interaction_generator
if interaction_generator is None:
return [], "Please start the interaction first.", "", gr.update(interactive=False), gr.update(interactive=False, value=None)
try:
user_output = message if radio_choice is None else radio_choice
images, conversation, role, turn, acc_message = interaction_generator.send(user_output)
human_listener = role == "Listener"
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, acc_message, \
gr.update(interactive=not human_listener, value=""), gr.update(interactive=human_listener, value=None), gr.update(interactive=True)
except StopIteration:
return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
start_btn.click(
start_interaction,
inputs=[model_iteration],
outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input, radio_buttons, send_btn]
)
send_btn.click(send_message, inputs=[user_input, radio_buttons], outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input, radio_buttons, send_btn])
return app
app = create_app()
app.launch()
|