Spaces:
Sleeping
Sleeping
File size: 15,669 Bytes
8133f69 d1a5104 8133f69 14eba99 8133f69 14eba99 8133f69 5f8e458 8133f69 5f8e458 554adbb 5f8e458 8133f69 5f8e458 8133f69 5f8e458 554adbb 5f8e458 8133f69 5f8e458 554adbb d1a5104 5f8e458 554adbb d1a5104 5f8e458 14eba99 d1a5104 14eba99 8133f69 14eba99 8133f69 14eba99 8133f69 72c2e5e 8133f69 14eba99 8133f69 14eba99 8133f69 14eba99 8133f69 14eba99 8133f69 14eba99 d1a5104 14eba99 8133f69 14eba99 8133f69 14eba99 8133f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import spaces
import gradio as gr
import torch
import random
import os
from typing import List, Tuple
from config_generator import generate_complete_game
from dataset import get_processor, joint_speaker_input, joint_listener_input, get_index_to_token
import torch
import transformers
from transformers import Idefics2ForConditionalGeneration
from peft import LoraConfig, get_peft_model
from joint_inference import IdeficsJointInferenceModel
# Initialize the model globally
repo = 'lil-lab/cogen'
checkpoint = "HuggingFaceM4/idefics2-8b"
model = Idefics2ForConditionalGeneration.from_pretrained(checkpoint, torch_dtype=torch.bfloat16)
target_modules=r'(.*(vision_model|modality_projection|perceiver_resampler).*(out_proj|fc1|fc2|down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$)|(.*(k_proj|q_proj|v_proj).*$)'
lora_config = LoraConfig(
r=16, lora_alpha=8,
lora_dropout=0.1,
target_modules=target_modules,
init_lora_weights="gaussian"
)
model = get_peft_model(model, lora_config, adapter_name="initial")
model.load_adapter(repo, "initial", revision="r0_full")
# Add other adapter
new_targets = set()
for n, p in model.named_parameters():
if 'lora' in n:
new_targets.add(n[17:n.find('lora')-1])
new_targets = list(new_targets)
lora_config = LoraConfig(
r=16, lora_alpha=8,
lora_dropout=0.1,
target_modules=new_targets,
init_lora_weights="gaussian"
)
model.add_adapter('final', lora_config)
model.load_adapter(repo, "final", revision="r3_full")
model = IdeficsJointInferenceModel(0.5, 0, model=model).cuda()
model.eval()
css="""
.radio-group .wrap {
display: grid;
grid-template-columns: repeat(5, 1fr);
grid-template-rows: repeat(5, 1fr);
width: 100%;
height: 100%
}
"""
def initialize_game() -> List[List[str]]:
context_dicts = [generate_complete_game() for _ in range(4)]
roles = ["listener"] * 3 + ["speaker"] * 3 + ["listener"] * 3 + ["speaker"] * 3
speaker_images = []
listener_images = []
targets = []
for context_dict in context_dicts:
for i in range(3):
speaker_images.append(context_dict["speaker_context"])
listener_images.append(context_dict["listener_context"])
targets.append(context_dict["targets"][i])
return list(zip(speaker_images, listener_images, targets, roles))
def get_model_response(
model, adapter_name, processor, index_to_token, role: str,
image_paths: List[str], user_message: str = "", target_image: str = ""
) -> str:
if role == "speaker":
img_dir = "tangram_pngs"
print("Starting processing")
input_tokens, attn_mask, images, image_attn_mask, label = joint_speaker_input(
processor, image_paths, target_image, model.get_listener().device
)
image_paths = [image_paths]
print("Starting inference")
captions = get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths,
processor, img_dir, index_to_token, adapter_name)
print("Done")
response = captions[0]
else: # listener
print("Starting processing")
images, l_input_tokens, l_attn_mask, l_image_attn_mask, s_input_tokens, s_attn_mask, \
s_image_attn_mask, s_target_mask, s_target_label = joint_listener_input(
processor, image_paths, user_message, model.get_listener().device
)
print("Starting inference")
response = get_listener_response(
model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name
)
print("Done")
return response
@spaces.GPU(duration=20)
def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token, adapter_name):
if model.model.active_adapter != adapter_name:
model.model.set_adapter(adapter_name)
with torch.no_grad():
captions, _, _, _, _ = model.generate(
images.cuda(), input_tokens.cuda(), attn_mask.cuda(), image_attn_mask.cuda(), label.cuda(),
image_paths, processor, img_dir, index_to_token,
max_steps=30, sampling_type="nucleus", temperature=0.7,
top_k=50, top_p=1, repetition_penalty=1, num_samples=5
)
return captions
@spaces.GPU(duration=20)
def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name):
if model.model.active_adapter != adapter_name:
model.model.set_adapter(adapter_name)
with torch.no_grad():
_, _, joint_log_probs = model.comprehension_side([
images.cuda(), l_input_tokens.cuda(), l_attn_mask.cuda(), l_image_attn_mask.cuda(), index_to_token,
s_input_tokens.cuda(), s_attn_mask.cuda(), s_image_attn_mask.cuda(), s_target_mask.cuda(), s_target_label.cuda(),
])
target_idx = joint_log_probs[0].argmax().item()
response = image_paths[target_idx]
return response
def initialize_interaction(model_iteration):
# initialize the overall history
new_history = {
'adapter_name' : 'initial' if model_iteration == "Initial System" else "final",
'image_role_pairs' : initialize_game(),
'conversation' : [],
'turn' : 0,
'num_correct' : 0,
}
# Initialize the first turn (always a listener)
turn = new_history['turn']
image_role_pairs = new_history['image_role_pairs']
speaker_image, listener_image, target_image, _ = image_role_pairs[turn]
target_idx = speaker_image.index(target_image)
new_history['conversation'].extend([
f"TURN: {turn + 1}/12",
f"Generate a description for the target image. Your target is Image {target_idx + 1}"
])
return new_history
def progress_game(user_message, processor, index_to_token, current_state):
# First get the game state
turn = current_state['turn']
image_role_pairs = current_state['image_role_pairs']
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
human_role = "Speaker" if model_role == "listener" else "Listener"
# Next, move on with current turn
if model_role == "listener":
human_context = speaker_image
model_context = listener_image
# If model is a listener, the human must have sent a message
current_state['conversation'].append(f"You: {user_message}")
model_message = get_model_response(
model, current_state['adapter_name'], processor, index_to_token, model_role,
model_context, user_message=user_message
)
model_idx = human_context.index(model_message)
target_idx = human_context.index(target_image)
if int(model_idx) == int(target_idx):
current_state['conversation'].append("The model guessed correctly!\n")
current_state['num_correct'] += 1
else:
current_state['conversation'].append(f"The model guessed incorrectly.\n")
else:
human_context = listener_image
model_context = speaker_image
# If model is a speaker, the human must have made a guess
target_idx = human_context.index(target_image)
current_state['conversation'][-1] += f"{user_message}"
if int(user_message) == target_idx + 1:
current_state['conversation'].append("Correct!\n")
current_state['num_correct'] += 1
else:
current_state['conversation'].append(f"Incorrect!\n")
# We move on to the next turn
current_state['turn'] += 1
acc_message = f"{current_state['num_correct']}/{current_state['turn']}"
turn_message = f"{current_state['turn'] + 1}/12"
if current_state['turn'] == len(image_role_pairs):
current_state['conversation'].append('The game is over!')
return human_context, current_state['conversation'], human_role, turn_message, acc_message, {}
speaker_image, listener_image, target_image, model_role = image_role_pairs[current_state['turn']]
human_role = "Listener" if model_role == "speaker" else "Speaker"
if model_role == "speaker":
human_context = listener_image
model_context = speaker_image
current_state['conversation'].extend([
f"TURN: {current_state['turn'] + 1}/12",
f"Guess the target image given the speaker's description. ",
])
model_message = get_model_response(model, current_state['adapter_name'], processor, index_to_token,
model_role, model_context, target_image=target_image)
current_state['conversation'].append(f"Model: {model_message}")
current_state['conversation'].append("You: The target is Image ")
else:
human_context = speaker_image
model_context = listener_image
target_idx = human_context.index(target_image)
current_state['conversation'].extend([
f"TURN: {current_state['turn'] + 1}/12",
f"Generate a description for the target image. Your target is Image {target_idx + 1}",
])
return human_context, current_state['conversation'], human_role, turn_message, acc_message, current_state
def get_current_images(current_history):
turn = current_history['turn']
image_role_pairs = current_history['image_role_pairs']
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
human_context = listener_image if model_role == "speaker" else speaker_image
return human_context
def get_human_role(current_history):
turn = current_history['turn']
image_role_pairs = current_history['image_role_pairs']
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
return "Listener" if model_role == "speaker" else "Speaker"
def create_app():
with gr.Blocks(css=css) as app:
game_history = gr.State(value={})
gr.Markdown("# Tangram Reference Game")
gr.Markdown(
'### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\
'you wish to play against our initial trained model ("Initial System") or our model at the end of deployment ("Final System") ' +\
'and press the "Start Game" button. There will be 12 rounds of reference games. You will take on a "listener" or a "speaker" role at each round.'
)
gr.Markdown(
'### In the speaker role, you will be assigned a target image. Your goal will be to describe this image (via a message in the textbox) ' +\
'so that your partner can guess what it is.'
)
gr.Markdown(
'### In the listener role, you will be given a description. Your goal will be ' +\
'to select the image that the description best describes (by clicking on the relevant button).'
)
gr.Markdown(
'### Press "Send" to submit your action in either role and make the game proceed.'
)
with gr.Row():
model_iteration = gr.Radio(["Initial System", "Final System"], label="Model Iteration")
start_btn = gr.Button("Start Game")
with gr.Row():
current_role = gr.Textbox(label="YOUR ROLE")
current_turn = gr.Textbox(label="TURN")
accuracy = gr.Textbox(label="FINAL ACCURACY")
with gr.Row():
image_output = gr.Gallery(
label="CONTEXT", show_label=False, elem_id="gallery",
columns=5, rows=2, object_fit="contain", height="250px",
allow_preview=False, container=True
)
with gr.Row():
conversation_output = gr.Textbox(label="Interaction History")
with gr.Column():
user_input = gr.Textbox(label="Your Message as Speaker", interactive=False)
radio_buttons = gr.Radio(
label="Your Guess as Listener",
elem_classes="radio-group",
choices=list(range(1, 11)),
interactive=False,
)
send_btn = gr.Button("Send", interactive=False)
processor = get_processor()
index_to_token = get_index_to_token()
def start_interaction(model_iteration):
# Initialize the interaction
if model_iteration is None:
return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True), {}
current_history = initialize_interaction(model_iteration)
# Unpack the relevant items
images = get_current_images(current_history)
conversation = current_history["conversation"]
role = get_human_role(current_history)
human_listener = role == "Listener"
current_turn = current_history['turn'] + 1
turn_msg = f"{current_turn}/12"
acc_msg = "0/0"
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn_msg, acc_msg, \
gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True), gr.update(interactive=False), current_history
def send_message(message, radio_choice, current_state):
nonlocal processor
nonlocal index_to_token
# Game ended
if current_state['turn'] == len(current_state['image_role_pairs']):
return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), \
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, value=None), {}
# Regular game progress
user_output = message if radio_choice is None else radio_choice
images, conversation, role, turn, acc_message, current_state = progress_game(user_output, processor, index_to_token, current_state)
human_listener = role == "Listener"
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, \
acc_message, gr.update(interactive=not human_listener, value=""), gr.update(interactive=human_listener, value=None), \
gr.update(interactive=True), gr.update(interactive=False), current_state
start_btn.click(
start_interaction,
inputs=[model_iteration],
outputs=[
image_output, conversation_output, current_role, current_turn, accuracy,
user_input, radio_buttons, send_btn, model_iteration, game_history],
queue=False
)
send_btn.click(
send_message,
inputs=[user_input, radio_buttons, game_history],
outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input,
radio_buttons, send_btn, model_iteration, game_history],
queue=True
)
return app
app = create_app()
app.queue()
app.launch()
|