File size: 15,669 Bytes
8133f69
 
 
 
 
 
 
 
 
 
d1a5104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133f69
 
 
 
 
 
 
 
 
 
 
 
14eba99
8133f69
14eba99
8133f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8e458
8133f69
 
 
5f8e458
 
 
554adbb
5f8e458
8133f69
 
5f8e458
8133f69
 
 
 
 
5f8e458
 
 
554adbb
5f8e458
 
8133f69
 
 
5f8e458
554adbb
d1a5104
 
5f8e458
 
 
 
 
 
 
 
 
 
 
554adbb
d1a5104
 
5f8e458
 
 
 
 
 
 
 
 
14eba99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a5104
14eba99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133f69
14eba99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133f69
 
 
14eba99
 
8133f69
 
 
 
72c2e5e
8133f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14eba99
8133f69
 
 
 
14eba99
8133f69
 
14eba99
 
 
 
 
 
 
 
 
 
 
 
 
 
8133f69
14eba99
8133f69
 
 
14eba99
 
 
 
 
 
 
d1a5104
14eba99
 
 
 
8133f69
 
 
 
14eba99
 
 
 
 
 
 
 
 
 
 
8133f69
 
 
 
 
14eba99
8133f69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import spaces
import gradio as gr
import torch

import random
import os
from typing import List, Tuple

from config_generator import generate_complete_game
from dataset import get_processor, joint_speaker_input, joint_listener_input, get_index_to_token

import torch
import transformers
from transformers import Idefics2ForConditionalGeneration
from peft import LoraConfig, get_peft_model
from joint_inference import IdeficsJointInferenceModel

# Initialize the model globally
repo = 'lil-lab/cogen'
checkpoint = "HuggingFaceM4/idefics2-8b"
model = Idefics2ForConditionalGeneration.from_pretrained(checkpoint, torch_dtype=torch.bfloat16)

target_modules=r'(.*(vision_model|modality_projection|perceiver_resampler).*(out_proj|fc1|fc2|down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$)|(.*(k_proj|q_proj|v_proj).*$)'
lora_config = LoraConfig(
    r=16, lora_alpha=8,
    lora_dropout=0.1,
    target_modules=target_modules,
    init_lora_weights="gaussian"
)
model = get_peft_model(model, lora_config, adapter_name="initial")
model.load_adapter(repo, "initial", revision="r0_full")

# Add other adapter
new_targets = set()
for n, p in model.named_parameters():
    if 'lora' in n:
        new_targets.add(n[17:n.find('lora')-1])
new_targets = list(new_targets)

lora_config = LoraConfig(
    r=16, lora_alpha=8,
    lora_dropout=0.1,
    target_modules=new_targets,
    init_lora_weights="gaussian"
)
model.add_adapter('final', lora_config)
model.load_adapter(repo, "final", revision="r3_full")
model = IdeficsJointInferenceModel(0.5, 0, model=model).cuda()
model.eval()

css="""
.radio-group .wrap {
    display: grid;
    grid-template-columns: repeat(5, 1fr);
    grid-template-rows: repeat(5, 1fr);
    width: 100%;
    height: 100%
}
"""

def initialize_game() -> List[List[str]]:
    context_dicts = [generate_complete_game() for _ in range(4)]

    roles = ["listener"] * 3 + ["speaker"] * 3 + ["listener"] * 3 + ["speaker"] * 3
    speaker_images = []
    listener_images = []
    targets = []

    for context_dict in context_dicts:
        for i in range(3):
            speaker_images.append(context_dict["speaker_context"])
            listener_images.append(context_dict["listener_context"])
            targets.append(context_dict["targets"][i])

    return list(zip(speaker_images, listener_images, targets, roles))

def get_model_response(
        model, adapter_name, processor, index_to_token, role: str, 
        image_paths: List[str], user_message: str = "", target_image: str = ""
) -> str:    
    if role == "speaker":
        img_dir = "tangram_pngs"
        print("Starting processing")
        input_tokens, attn_mask, images, image_attn_mask, label = joint_speaker_input(
            processor, image_paths, target_image, model.get_listener().device
        )
        image_paths = [image_paths]
        print("Starting inference")
        captions = get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths,
                                        processor, img_dir, index_to_token, adapter_name)
        print("Done")
        response = captions[0]
    else:  # listener
        print("Starting processing")
        images, l_input_tokens, l_attn_mask, l_image_attn_mask, s_input_tokens, s_attn_mask, \
            s_image_attn_mask, s_target_mask, s_target_label = joint_listener_input(
                processor, image_paths, user_message, model.get_listener().device
            )

        print("Starting inference")
        response = get_listener_response(
            model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
            s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name
        )
        print("Done")

    return response

@spaces.GPU(duration=20)
def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token, adapter_name):
    if model.model.active_adapter != adapter_name:
        model.model.set_adapter(adapter_name)
    with torch.no_grad():
        captions, _, _, _, _ = model.generate(
            images.cuda(), input_tokens.cuda(), attn_mask.cuda(), image_attn_mask.cuda(), label.cuda(),
            image_paths, processor, img_dir, index_to_token,
            max_steps=30, sampling_type="nucleus", temperature=0.7,
            top_k=50, top_p=1, repetition_penalty=1, num_samples=5
        )
    return captions

@spaces.GPU(duration=20)
def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
                          s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name):
    if model.model.active_adapter != adapter_name:
        model.model.set_adapter(adapter_name)
    with torch.no_grad():
        _, _, joint_log_probs = model.comprehension_side([
            images.cuda(), l_input_tokens.cuda(), l_attn_mask.cuda(), l_image_attn_mask.cuda(), index_to_token,
            s_input_tokens.cuda(), s_attn_mask.cuda(), s_image_attn_mask.cuda(), s_target_mask.cuda(), s_target_label.cuda(),
        ])
        target_idx = joint_log_probs[0].argmax().item()
        response = image_paths[target_idx]
    return response            

def initialize_interaction(model_iteration):
    # initialize the overall history
    new_history = {
        'adapter_name' : 'initial' if model_iteration == "Initial System" else "final",
        'image_role_pairs' : initialize_game(),
        'conversation' : [],
        'turn' : 0,
        'num_correct' : 0,
    }

    # Initialize the first turn (always a listener)
    turn = new_history['turn']
    image_role_pairs = new_history['image_role_pairs']
    speaker_image, listener_image, target_image, _ = image_role_pairs[turn]
    target_idx = speaker_image.index(target_image)
    new_history['conversation'].extend([
        f"TURN: {turn + 1}/12",
        f"Generate a description for the target image. Your target is Image {target_idx + 1}"
    ])

    return new_history

def progress_game(user_message, processor, index_to_token, current_state):
    # First get the game state
    turn = current_state['turn']
    image_role_pairs = current_state['image_role_pairs']
    speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
    human_role = "Speaker" if model_role == "listener" else "Listener"

    # Next, move on with current turn
    if model_role == "listener":
        human_context = speaker_image
        model_context = listener_image

        # If model is a listener, the human must have sent a message
        current_state['conversation'].append(f"You: {user_message}")
        model_message = get_model_response(
            model, current_state['adapter_name'], processor, index_to_token, model_role,
            model_context, user_message=user_message
        )
        model_idx = human_context.index(model_message)
        target_idx = human_context.index(target_image)

        if int(model_idx) == int(target_idx):
            current_state['conversation'].append("The model guessed correctly!\n")
            current_state['num_correct'] += 1
        else:
            current_state['conversation'].append(f"The model guessed incorrectly.\n")
    else:
        human_context = listener_image
        model_context = speaker_image

        # If model is a speaker, the human must have made a guess
        target_idx = human_context.index(target_image)
        current_state['conversation'][-1] += f"{user_message}"
        if int(user_message) == target_idx + 1:
            current_state['conversation'].append("Correct!\n")
            current_state['num_correct'] += 1
        else:
            current_state['conversation'].append(f"Incorrect!\n")

    # We move on to the next turn
    current_state['turn'] += 1
    acc_message = f"{current_state['num_correct']}/{current_state['turn']}"
    turn_message = f"{current_state['turn'] + 1}/12"
    if current_state['turn'] == len(image_role_pairs):
        current_state['conversation'].append('The game is over!')
        return human_context, current_state['conversation'], human_role, turn_message, acc_message, {}

    speaker_image, listener_image, target_image, model_role = image_role_pairs[current_state['turn']]
    human_role = "Listener" if model_role == "speaker" else "Speaker"
    if model_role == "speaker":
        human_context = listener_image
        model_context = speaker_image

        current_state['conversation'].extend([
            f"TURN: {current_state['turn'] + 1}/12",
            f"Guess the target image given the speaker's description. ",
        ])
        model_message = get_model_response(model, current_state['adapter_name'], processor, index_to_token,
                                           model_role, model_context, target_image=target_image)
        current_state['conversation'].append(f"Model: {model_message}")
        current_state['conversation'].append("You: The target is Image ")
    else:
        human_context = speaker_image
        model_context = listener_image
        target_idx = human_context.index(target_image)        

        current_state['conversation'].extend([
            f"TURN: {current_state['turn'] + 1}/12",
            f"Generate a description for the target image. Your target is Image {target_idx + 1}",
        ])
        
    return human_context, current_state['conversation'], human_role, turn_message, acc_message, current_state        

def get_current_images(current_history):
    turn = current_history['turn']
    image_role_pairs = current_history['image_role_pairs']
    speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
    human_context = listener_image if model_role == "speaker" else speaker_image
    return human_context

def get_human_role(current_history):
    turn = current_history['turn']    
    image_role_pairs = current_history['image_role_pairs']
    speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
    return "Listener" if model_role == "speaker" else "Speaker"

def create_app():
    with gr.Blocks(css=css) as app:
        game_history = gr.State(value={})

        gr.Markdown("# Tangram Reference Game")
        gr.Markdown(
            '### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\
            'you wish to play against our initial trained model ("Initial System") or our model at the end of deployment ("Final System") ' +\
            'and press the "Start Game" button. There will be 12 rounds of reference games. You will take on a "listener" or a "speaker" role at each round.'
        )

        gr.Markdown(
            '### In the speaker role, you will be assigned a target image. Your goal will be to describe this image (via a message in the textbox) ' +\
            'so that your partner can guess what it is.'
        )
        gr.Markdown(
            '### In the listener role, you will be given a description. Your goal will be ' +\
            'to select the image that the description best describes (by clicking on the relevant button).'
        )
        gr.Markdown(
            '### Press "Send" to submit your action in either role and make the game proceed.'
        )
        
        with gr.Row():
            model_iteration = gr.Radio(["Initial System", "Final System"], label="Model Iteration")
            start_btn = gr.Button("Start Game")

        with gr.Row():
            current_role = gr.Textbox(label="YOUR ROLE")
            current_turn = gr.Textbox(label="TURN")
            accuracy = gr.Textbox(label="FINAL ACCURACY")
            
        with gr.Row():
            image_output = gr.Gallery(
                label="CONTEXT", show_label=False, elem_id="gallery", 
                columns=5, rows=2, object_fit="contain", height="250px",
                allow_preview=False, container=True
            )
        
        with gr.Row():
            conversation_output = gr.Textbox(label="Interaction History")

            with gr.Column():
                user_input = gr.Textbox(label="Your Message as Speaker", interactive=False)
                radio_buttons = gr.Radio(
                    label="Your Guess as Listener",
                    elem_classes="radio-group",
                    choices=list(range(1, 11)),
                    interactive=False,
                )

        send_btn = gr.Button("Send", interactive=False)
        processor = get_processor()
        index_to_token = get_index_to_token()

        def start_interaction(model_iteration):
            # Initialize the interaction
            if model_iteration is None:
                return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \
                    gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True), {}
            current_history = initialize_interaction(model_iteration)

            # Unpack the relevant items
            images = get_current_images(current_history)
            conversation = current_history["conversation"]
            role = get_human_role(current_history) 
            human_listener = role == "Listener"
            
            current_turn = current_history['turn'] + 1
            turn_msg = f"{current_turn}/12"
            acc_msg = "0/0"
            return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn_msg, acc_msg, \
                gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True), gr.update(interactive=False), current_history

        def send_message(message, radio_choice, current_state):
            nonlocal processor
            nonlocal index_to_token

            # Game ended
            if current_state['turn'] == len(current_state['image_role_pairs']):
                return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), \
                    gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, value=None), {}

            # Regular game progress
            user_output = message if radio_choice is None else radio_choice
            images, conversation, role, turn, acc_message, current_state = progress_game(user_output, processor, index_to_token, current_state)
            human_listener = role == "Listener"
            return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, \
                acc_message, gr.update(interactive=not human_listener, value=""), gr.update(interactive=human_listener, value=None), \
                gr.update(interactive=True), gr.update(interactive=False), current_state

        start_btn.click(
            start_interaction, 
            inputs=[model_iteration], 
            outputs=[
                image_output, conversation_output, current_role, current_turn, accuracy,
                user_input, radio_buttons, send_btn, model_iteration, game_history],
            queue=False
        )
        send_btn.click(
            send_message,
            inputs=[user_input, radio_buttons, game_history],
            outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input,
                     radio_buttons, send_btn, model_iteration, game_history],
            queue=True            
        )

    return app

app = create_app()
app.queue()
app.launch()