Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import os | |
import transformers | |
from transformers import Idefics2ForConditionalGeneration | |
from peft import LoraConfig, get_peft_model | |
from joint_inference import IdeficsJointInferenceModel | |
def get_model(): | |
# Initialize the model | |
repo = 'lil-lab/cogen' | |
checkpoint = "HuggingFaceM4/idefics2-8b" | |
model = Idefics2ForConditionalGeneration.from_pretrained(checkpoint, torch_dtype=torch.bfloat16).cuda() | |
# Add LoRA adapters | |
target_modules=r'(.*(vision_model|modality_projection|perceiver_resampler).*(out_proj|fc1|fc2|down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$)|(.*(k_proj|q_proj|v_proj).*$)' | |
lora_config = LoraConfig( | |
r=16, lora_alpha=8, | |
lora_dropout=0.1, | |
target_modules=target_modules, | |
init_lora_weights="gaussian" | |
) | |
model = get_peft_model(model, lora_config, adapter_name="initial") | |
model.load_adapter(repo, "initial", revision="r0_full") | |
# Add other adapter | |
new_targets = set() | |
for n, p in model.named_parameters(): | |
if 'lora' in n: | |
new_targets.add(n[17:n.find('lora')-1]) | |
new_targets = list(new_targets) | |
lora_config = LoraConfig( | |
r=16, lora_alpha=8, | |
lora_dropout=0.1, | |
target_modules=new_targets, | |
init_lora_weights="gaussian" | |
) | |
model.add_adapter('final', lora_config) | |
model.load_adapter(repo, "final", revision="r3_full") | |
model = IdeficsJointInferenceModel(0.5, 0, model=model).cuda() | |
model.eval() | |
return model | |