gcs / app.py
Hjgugugjhuhjggg's picture
Update app.py
1c3034c verified
raw
history blame
5.94 kB
import os
import re
import json
import requests
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from google.auth import exceptions
from google.cloud import storage
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from io import BytesIO
from dotenv import load_dotenv
import uvicorn
load_dotenv()
API_KEY = os.getenv("API_KEY")
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
def sanitize_bucket_name(bucket_name):
"""Corrige un nombre de bucket inválido para ajustarse a las reglas de Google Cloud Storage."""
bucket_name = bucket_name.lower()
bucket_name = re.sub(r"[^a-z0-9-\.]", "-", bucket_name)
bucket_name = bucket_name.strip("-.")
if len(bucket_name) > 63:
bucket_name = bucket_name[:63]
if not re.match(r"^[a-z0-9]", bucket_name):
bucket_name = "a" + bucket_name
if not re.match(r"[a-z0-9]$", bucket_name):
bucket_name = bucket_name + "a"
return bucket_name
def validate_bucket_name(bucket_name):
"""Valida si el nombre de bucket cumple con las reglas de Google Cloud Storage."""
if not re.match(r"^[a-z0-9][a-z0-9\-\.]*[a-z0-9]$", bucket_name):
raise ValueError(f"Nombre de bucket inválido: '{bucket_name}'. Debe cumplir con las reglas de GCS.")
return bucket_name
try:
# Sanitizar y validar el nombre del bucket
GCS_BUCKET_NAME = sanitize_bucket_name(GCS_BUCKET_NAME)
GCS_BUCKET_NAME = validate_bucket_name(GCS_BUCKET_NAME)
# Cargar credenciales de Google Cloud Storage
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
storage_client = storage.Client.from_service_account_info(credentials_info)
bucket = storage_client.bucket(GCS_BUCKET_NAME)
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e:
print(f"Error al cargar credenciales o bucket: {e}")
exit(1)
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
class GCSStreamHandler:
def __init__(self, bucket_name):
self.bucket = storage_client.bucket(bucket_name)
def file_exists(self, blob_name):
return self.bucket.blob(blob_name).exists()
def stream_file_from_gcs(self, blob_name):
blob = self.bucket.blob(blob_name)
if not blob.exists():
raise HTTPException(status_code=404, detail=f"Archivo '{blob_name}' no encontrado en GCS.")
return blob.download_as_bytes()
def upload_file_to_gcs(self, blob_name, data_stream):
blob = self.bucket.blob(blob_name)
blob.upload_from_file(data_stream)
def ensure_bucket_structure(self, model_prefix):
required_files = ["config.json", "tokenizer.json"]
for filename in required_files:
blob_name = f"{model_prefix}/{filename}"
if not self.file_exists(blob_name):
self.bucket.blob(blob_name).upload_from_string("{}", content_type="application/json")
def stream_model_files(self, model_prefix, model_patterns):
model_files = {}
for pattern in model_patterns:
blobs = list(self.bucket.list_blobs(prefix=f"{model_prefix}/"))
for blob in blobs:
if re.match(pattern, blob.name.split('/')[-1]):
model_files[blob.name.split('/')[-1]] = BytesIO(blob.download_as_bytes())
return model_files
def download_model_from_huggingface(model_name):
file_patterns = [
"pytorch_model.bin",
"model.safetensors",
"config.json",
"tokenizer.json",
]
for i in range(1, 100):
file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}")
file_patterns.append(f"model-{i:05}")
for filename in file_patterns:
url = f"https://huggingface.co/{model_name}/resolve/main/{filename}"
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
try:
response = requests.get(url, headers=headers, stream=True)
if response.status_code == 200:
blob_name = f"{model_name}/{filename}"
blob = bucket.blob(blob_name)
blob.upload_from_file(BytesIO(response.content))
except Exception:
pass
@app.post("/predict/")
async def predict(request: DownloadModelRequest):
try:
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)
model_prefix = request.model_name
model_patterns = [
r"pytorch_model-\d+-of-\d+",
r"model-\d+",
r"pytorch_model.bin",
r"model.safetensors",
]
if not any(
gcs_handler.file_exists(f"{model_prefix}/{pattern}") for pattern in model_patterns
):
download_model_from_huggingface(model_prefix)
model_files = gcs_handler.stream_model_files(model_prefix, model_patterns)
config_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/config.json")
tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/tokenizer.json")
model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream))
tokenizer = AutoTokenizer.from_pretrained(BytesIO(tokenizer_stream))
pipeline_task = request.pipeline_task
if pipeline_task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering"]:
raise HTTPException(status_code=400, detail="Tarea no soportada")
pipeline_ = pipeline(pipeline_task, model=model, tokenizer=tokenizer)
input_text = request.input_text
result = pipeline_(input_text)
return {"response": result}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {e}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)