gcs / app.py
Hjgugugjhuhjggg's picture
Update app.py
4bf1bd9 verified
raw
history blame
8.56 kB
import os
import logging
import requests
import threading
from io import BytesIO
from fastapi import FastAPI, HTTPException, Response, Request
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
GenerationConfig
)
import boto3
from huggingface_hub import hf_hub_download
import soundfile as sf
import numpy as np
import torch
import uvicorn
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
def download_model_from_s3(self, model_name):
try:
logging.info(f"Trying to load {model_name} from S3...")
config = AutoConfig.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config)
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
logging.info(f"Loaded {model_name} from S3 successfully.")
return model, tokenizer
except Exception as e:
logging.error(f"Error loading {model_name} from S3: {e}")
return None, None
async def load_model_and_tokenizer(self, model_name):
try:
model, tokenizer = self.download_model_from_s3(model_name)
if model is None or tokenizer is None:
model, tokenizer = await self.download_and_save_model_from_huggingface(model_name)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
async def download_and_save_model_from_huggingface(self, model_name):
try:
logging.info(f"Downloading {model_name} from Hugging Face...")
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
model = AutoModelForCausalLM.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
logging.info(f"Downloaded {model_name} successfully.")
self.upload_model_to_s3(model_name, model, tokenizer)
return model, tokenizer
except Exception as e:
logging.error(f"Error downloading model from Hugging Face: {e}")
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")
def upload_model_to_s3(self, model_name, model, tokenizer):
try:
s3_uri = self._get_s3_uri(model_name)
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
logging.info(f"Saved {model_name} to S3 successfully.")
except Exception as e:
logging.error(f"Error saving {model_name} to S3: {e}")
raise HTTPException(status_code=500, detail=f"Error saving model to S3: {e}")
app = FastAPI()
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
try:
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=body.temperature,
max_new_tokens=body.max_new_tokens,
top_p=body.top_p,
top_k=body.top_k,
repetition_penalty=body.repetition_penalty,
do_sample=body.do_sample,
num_return_sequences=body.num_return_sequences
)
async def stream_text():
input_text = body.input_text
max_length = model.config.max_position_embeddings
generated_text = ""
while True:
inputs = tokenizer(input_text, return_tensors="pt").to(device)
input_length = inputs.input_ids.shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens < body.max_new_tokens:
generation_config.max_new_tokens = remaining_tokens
if remaining_tokens <= 0:
break
output = model.generate(**inputs, generation_config=generation_config)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
if len(tokenizer.encode(generated_text)) >= max_length:
break
input_text = chunk
if body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif body.task_type == "text-to-video":
try:
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
video = generator(body.input_text)
return Response(content=video, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
else:
raise HTTPException(status_code=400, detail="Unsupported task type")
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def download_all_models_in_background():
models_url = "https://huggingface.co/api/models"
try:
response = requests.get(models_url)
if response.status_code != 200:
logging.error("Error al obtener la lista de modelos de Hugging Face.")
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
models = response.json()
for model in models:
model_name = model["id"]
model_loader.download_and_save_model_from_huggingface(model_name)
except Exception as e:
logging.error(f"Error al descargar modelos en segundo plano: {e}")
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
def run_in_background():
threading.Thread(target=download_all_models_in_background, daemon=True).start()
@app.on_event("startup")
async def startup_event():
run_in_background()
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)