|
import os |
|
import json |
|
import logging |
|
import io |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from google.cloud import storage |
|
from google.auth import exceptions |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
from dotenv import load_dotenv |
|
import torch |
|
import safetensors.torch |
|
import requests |
|
from diffusers import StableDiffusionPipeline |
|
from audiocraft.models import AudioLM |
|
import asyncio |
|
import threading |
|
import uvicorn |
|
from transformers import pipeline as tts_pipeline |
|
import soundfile as sf |
|
|
|
load_dotenv() |
|
|
|
API_KEY = os.getenv("API_KEY") |
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") |
|
HF_API_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
try: |
|
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) |
|
storage_client = storage.Client.from_service_account_info(credentials_info) |
|
bucket = storage_client.bucket(GCS_BUCKET_NAME) |
|
logger.info(f"Conexi贸n con Google Cloud Storage exitosa. Bucket: {GCS_BUCKET_NAME}") |
|
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e: |
|
logger.error(f"Error al cargar las credenciales o bucket: {e}") |
|
raise RuntimeError(f"Error al cargar las credenciales o bucket: {e}") |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str |
|
pipeline_task: str |
|
input_text: str |
|
|
|
class GCSHandler: |
|
def __init__(self, bucket_name): |
|
self.bucket = storage_client.bucket(bucket_name) |
|
|
|
def file_exists(self, blob_name): |
|
exists = self.bucket.blob(blob_name).exists() |
|
logger.debug(f"Comprobando existencia de archivo '{blob_name}': {exists}") |
|
return exists |
|
|
|
def download_file_as_stream(self, blob_name): |
|
blob = self.bucket.blob(blob_name) |
|
if not blob.exists(): |
|
logger.error(f"Archivo '{blob_name}' no encontrado en GCS.") |
|
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.") |
|
logger.debug(f"Descargando archivo '{blob_name}' de GCS.") |
|
return blob.open("rb") |
|
|
|
def upload_file(self, blob_name, file_stream): |
|
blob = self.bucket.blob(blob_name) |
|
try: |
|
blob.upload_from_file(file_stream) |
|
logger.info(f"Archivo '{blob_name}' subido exitosamente a GCS.") |
|
except Exception as e: |
|
logger.error(f"Error subiendo el archivo '{blob_name}' a GCS: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error subiendo archivo '{blob_name}' a GCS") |
|
|
|
def generate_signed_url(self, blob_name, expiration=3600): |
|
blob = self.bucket.blob(blob_name) |
|
url = blob.generate_signed_url(expiration=expiration) |
|
logger.debug(f"Generada URL firmada para '{blob_name}': {url}") |
|
return url |
|
|
|
def download_model_from_huggingface(model_name): |
|
url = f"https://huggingface.co/{model_name}/tree/main" |
|
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} |
|
|
|
try: |
|
logger.info(f"Descargando el modelo '{model_name}' desde Hugging Face...") |
|
response = requests.get(url, headers=headers) |
|
if response.status_code == 200: |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
"pytorch_model.bin" |
|
] |
|
for file_name in model_files: |
|
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}" |
|
file_content = requests.get(file_url).content |
|
|
|
blob_name = f"{model_name}/{file_name}" |
|
blob = bucket.blob(blob_name) |
|
blob.upload_from_string(file_content) |
|
logger.info(f"Archivo '{file_name}' subido exitosamente al bucket GCS.") |
|
else: |
|
logger.error(f"Error al acceder al 谩rbol de archivos de Hugging Face para '{model_name}'.") |
|
raise HTTPException(status_code=404, detail="Error al acceder al 谩rbol de archivos de Hugging Face.") |
|
except Exception as e: |
|
logger.error(f"Error descargando archivos de Hugging Face: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error descargando archivos de Hugging Face: {e}") |
|
|
|
def load_model_from_gcs(model_name, gcs_handler): |
|
model_files = { |
|
"config": f"{model_name}/config.json", |
|
"tokenizer": f"{model_name}/tokenizer.json", |
|
"model_bin": f"{model_name}/pytorch_model.bin", |
|
"model_safetensors": f"{model_name}/model.safetensors" |
|
} |
|
|
|
model_data = {} |
|
for key, blob_name in model_files.items(): |
|
if not gcs_handler.file_exists(blob_name): |
|
logger.info(f"{key.capitalize()} no encontrado en GCS, descargando desde Hugging Face...") |
|
download_model_from_huggingface(model_name) |
|
model_data[key] = gcs_handler.download_file_as_stream(blob_name) |
|
|
|
return model_data |
|
|
|
def load_diffuser_model_from_streams(model_data, model_name): |
|
model_bin_stream = model_data.get("model_bin") |
|
model_safetensors_stream = model_data.get("model_safetensors") |
|
|
|
if model_bin_stream or model_safetensors_stream: |
|
|
|
logger.info(f"Cargando modelo Diffusers para '{model_name}'...") |
|
pipe = StableDiffusionPipeline.from_pretrained(io.BytesIO(model_bin_stream.read())) |
|
else: |
|
raise HTTPException(status_code=404, detail="No se encontr贸 modelo compatible en el bucket.") |
|
|
|
return pipe |
|
|
|
def load_audiocraft_model_from_streams(model_data, model_name): |
|
model_bin_stream = model_data.get("model_bin") |
|
model_safetensors_stream = model_data.get("model_safetensors") |
|
|
|
if model_bin_stream or model_safetensors_stream: |
|
|
|
logger.info(f"Cargando modelo Audiocraft para '{model_name}'...") |
|
model = AudioLM.from_pretrained(io.BytesIO(model_bin_stream.read())) |
|
else: |
|
raise HTTPException(status_code=404, detail="No se encontr贸 modelo compatible en el bucket.") |
|
|
|
return model |
|
|
|
@app.post("/predict/") |
|
async def predict(request: DownloadModelRequest): |
|
logger.info(f"Iniciando predicci贸n para el modelo '{request.model_name}' con tarea '{request.pipeline_task}'...") |
|
try: |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
model_prefix = request.model_name |
|
|
|
model_data = load_model_from_gcs(model_prefix, gcs_handler) |
|
|
|
|
|
config_stream = model_data["config"] |
|
tokenizer_stream = model_data["tokenizer"] |
|
|
|
if request.pipeline_task == "text-generation": |
|
|
|
model = load_model_from_streams(model_data, model_prefix) |
|
tokenizer = AutoTokenizer.from_pretrained(io.BytesIO(tokenizer_stream.read())) |
|
pipe = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer) |
|
result = pipe(request.input_text) |
|
elif request.pipeline_task == "image-generation": |
|
|
|
pipe = load_diffuser_model_from_streams(model_data, model_prefix) |
|
result = pipe(request.input_text).images |
|
elif request.pipeline_task == "audio-generation": |
|
|
|
model = load_audiocraft_model_from_streams(model_data, model_prefix) |
|
result = model.generate(request.input_text) |
|
elif request.pipeline_task == "text-to-speech": |
|
|
|
tts_pipe = tts_pipeline("text-to-speech", model=model, tokenizer=tokenizer) |
|
audio_output = tts_pipe(request.input_text)[0]['audio'] |
|
|
|
audio_path = "output.wav" |
|
sf.write(audio_path, audio_output, 16000) |
|
result = audio_path |
|
elif request.pipeline_task == "text-to-audio": |
|
|
|
model = load_audiocraft_model_from_streams(model_data, model_prefix) |
|
audio_output = model.generate(request.input_text) |
|
|
|
audio_path = "output_audio.wav" |
|
sf.write(audio_path, audio_output, 16000) |
|
result = audio_path |
|
else: |
|
raise HTTPException(status_code=400, detail="Tarea no soportada.") |
|
|
|
logger.info(f"Resultado generado para la tarea '{request.pipeline_task}': {result[0]}") |
|
return {"response": result[0]} |
|
|
|
except HTTPException as e: |
|
logger.error(f"HTTPException: {e.detail}") |
|
raise e |
|
except Exception as e: |
|
logger.error(f"Error inesperado: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error: {e}") |
|
|
|
def download_model_in_background(model_name): |
|
try: |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
logger.info(f"Iniciando descarga en segundo plano del modelo '{model_name}' a GCS...") |
|
download_model_from_huggingface(model_name) |
|
logger.info(f"Descarga del modelo '{model_name}' completada.") |
|
except Exception as e: |
|
logger.error(f"Error al descargar el modelo '{model_name}' en segundo plano: {e}") |
|
|
|
def run_in_background(): |
|
logger.info("Iniciando la descarga de modelos en segundo plano...") |
|
threading.Thread(target=download_model_in_background, args=("modelo_ejemplo",)).start() |
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
run_in_background() |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|