|
import os |
|
import json |
|
import uuid |
|
import requests |
|
import threading |
|
import logging |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from google.cloud import storage |
|
from google.auth import exceptions |
|
from transformers import pipeline |
|
from dotenv import load_dotenv |
|
import uvicorn |
|
import io |
|
|
|
load_dotenv() |
|
|
|
API_KEY = os.getenv("API_KEY") |
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") |
|
HF_API_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
try: |
|
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) |
|
storage_client = storage.Client.from_service_account_info(credentials_info) |
|
bucket = storage_client.bucket(GCS_BUCKET_NAME) |
|
logger.info(f"Conexi贸n con Google Cloud Storage exitosa. Bucket: {GCS_BUCKET_NAME}") |
|
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e: |
|
logger.error(f"Error al cargar las credenciales o bucket: {e}") |
|
raise RuntimeError(f"Error al cargar las credenciales o bucket: {e}") |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str |
|
pipeline_task: str |
|
input_text: str |
|
|
|
class GCSHandler: |
|
def __init__(self, bucket_name): |
|
self.bucket = storage_client.bucket(bucket_name) |
|
|
|
def file_exists(self, blob_name): |
|
exists = self.bucket.blob(blob_name).exists() |
|
logger.debug(f"Comprobando existencia de archivo '{blob_name}': {exists}") |
|
return exists |
|
|
|
def upload_file(self, blob_name, file_stream): |
|
blob = self.bucket.blob(blob_name) |
|
try: |
|
blob.upload_from_file(file_stream) |
|
logger.info(f"Archivo '{blob_name}' subido exitosamente a GCS.") |
|
except Exception as e: |
|
logger.error(f"Error subiendo el archivo '{blob_name}' a GCS: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error subiendo archivo '{blob_name}' a GCS") |
|
|
|
def download_file(self, blob_name): |
|
blob = self.bucket.blob(blob_name) |
|
if not blob.exists(): |
|
logger.error(f"Archivo '{blob_name}' no encontrado en GCS.") |
|
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.") |
|
logger.debug(f"Descargando archivo '{blob_name}' de GCS.") |
|
return blob.open("rb") |
|
|
|
def generate_signed_url(self, blob_name, expiration=3600): |
|
blob = self.bucket.blob(blob_name) |
|
url = blob.generate_signed_url(expiration=expiration) |
|
logger.debug(f"Generada URL firmada para '{blob_name}': {url}") |
|
return url |
|
|
|
def download_model_from_huggingface(model_name): |
|
url = f"https://huggingface.co/{model_name}/tree/main" |
|
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} |
|
|
|
try: |
|
logger.info(f"Descargando el modelo '{model_name}' desde Hugging Face...") |
|
response = requests.get(url, headers=headers) |
|
if response.status_code == 200: |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
for file_name in model_files: |
|
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}" |
|
file_content = requests.get(file_url).content |
|
blob_name = f"{model_name}/{file_name}" |
|
blob = bucket.blob(blob_name) |
|
blob.upload_from_string(file_content) |
|
logger.info(f"Archivo '{file_name}' subido exitosamente al bucket GCS.") |
|
else: |
|
logger.error(f"Error al acceder al 谩rbol de archivos de Hugging Face para '{model_name}'.") |
|
raise HTTPException(status_code=404, detail="Error al acceder al 谩rbol de archivos de Hugging Face.") |
|
except Exception as e: |
|
logger.error(f"Error descargando archivos de Hugging Face: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error descargando archivos de Hugging Face: {e}") |
|
|
|
@app.post("/predict/") |
|
async def predict(request: DownloadModelRequest): |
|
logger.info(f"Iniciando predicci贸n para el modelo '{request.model_name}' con tarea '{request.pipeline_task}'...") |
|
try: |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
model_prefix = request.model_name |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
|
|
model_files_exist = all(gcs_handler.file_exists(f"{model_prefix}/{file}") for file in model_files) |
|
|
|
if not model_files_exist: |
|
logger.info(f"Modelos no encontrados en GCS, descargando '{model_prefix}' desde Hugging Face...") |
|
download_model_from_huggingface(model_prefix) |
|
|
|
model_files_streams = {file: gcs_handler.download_file(f"{model_prefix}/{file}") for file in model_files if gcs_handler.file_exists(f"{model_prefix}/{file}")} |
|
|
|
config_stream = model_files_streams.get("config.json") |
|
tokenizer_stream = model_files_streams.get("tokenizer.json") |
|
model_stream = model_files_streams.get("pytorch_model.bin") |
|
|
|
if not config_stream or not tokenizer_stream or not model_stream: |
|
logger.error(f"Faltan archivos necesarios para el modelo '{model_prefix}'.") |
|
raise HTTPException(status_code=500, detail="Required model files missing.") |
|
|
|
if request.pipeline_task in ["text-generation", "translation", "summarization"]: |
|
pipe = pipeline(request.pipeline_task, model=model_stream, tokenizer=tokenizer_stream) |
|
result = pipe(request.input_text) |
|
logger.info(f"Resultado generado para la tarea '{request.pipeline_task}': {result[0]}") |
|
return {"response": result[0]} |
|
|
|
elif request.pipeline_task == "image-generation": |
|
try: |
|
pipe = pipeline("image-generation", model=model_stream) |
|
images = pipe(request.input_text) |
|
image = images[0] |
|
image_filename = f"{uuid.uuid4().hex}.png" |
|
image_path = f"images/{image_filename}" |
|
image.save(image_path) |
|
|
|
gcs_handler.upload_file(image_path, open(image_path, "rb")) |
|
image_url = gcs_handler.generate_signed_url(image_path) |
|
logger.info(f"Imagen generada y subida correctamente con URL: {image_url}") |
|
return {"response": {"image_url": image_url}} |
|
except Exception as e: |
|
logger.error(f"Error generando la imagen: {e}") |
|
raise HTTPException(status_code=400, detail="Error generando la imagen.") |
|
|
|
elif request.pipeline_task == "image-editing": |
|
try: |
|
pipe = pipeline("image-editing", model=model_stream) |
|
edited_images = pipe(request.input_text) |
|
edited_image = edited_images[0] |
|
edited_image_filename = f"{uuid.uuid4().hex}_edited.png" |
|
edited_image.save(edited_image_filename) |
|
|
|
gcs_handler.upload_file(f"images/{edited_image_filename}", open(edited_image_filename, "rb")) |
|
edited_image_url = gcs_handler.generate_signed_url(f"images/{edited_image_filename}") |
|
logger.info(f"Imagen editada y subida correctamente con URL: {edited_image_url}") |
|
return {"response": {"edited_image_url": edited_image_url}} |
|
except Exception as e: |
|
logger.error(f"Error editando la imagen: {e}") |
|
raise HTTPException(status_code=400, detail="Error editando la imagen.") |
|
|
|
elif request.pipeline_task == "image-to-image": |
|
try: |
|
pipe = pipeline("image-to-image", model=model_stream) |
|
transformed_images = pipe(request.input_text) |
|
transformed_image = transformed_images[0] |
|
transformed_image_filename = f"{uuid.uuid4().hex}_transformed.png" |
|
transformed_image.save(transformed_image_filename) |
|
|
|
gcs_handler.upload_file(f"images/{transformed_image_filename}", open(transformed_image_filename, "rb")) |
|
transformed_image_url = gcs_handler.generate_signed_url(f"images/{transformed_image_filename}") |
|
logger.info(f"Imagen transformada y subida correctamente con URL: {transformed_image_url}") |
|
return {"response": {"transformed_image_url": transformed_image_url}} |
|
except Exception as e: |
|
logger.error(f"Error transformando la imagen: {e}") |
|
raise HTTPException(status_code=400, detail="Error transformando la imagen.") |
|
|
|
elif request.pipeline_task == "text-to-3d": |
|
try: |
|
model_3d_filename = f"{uuid.uuid4().hex}.obj" |
|
model_3d_path = f"3d-models/{model_3d_filename}" |
|
with open(model_3d_path, "w") as f: |
|
f.write("Simulated 3D model data") |
|
|
|
gcs_handler.upload_file(f"3d-models/{model_3d_filename}", open(model_3d_path, "rb")) |
|
model_3d_url = gcs_handler.generate_signed_url(f"3d-models/{model_3d_filename}") |
|
logger.info(f"Modelo 3D generado y subido con URL: {model_3d_url}") |
|
return {"response": {"model_3d_url": model_3d_url}} |
|
except Exception as e: |
|
logger.error(f"Error generando el modelo 3D: {e}") |
|
raise HTTPException(status_code=400, detail="Error generando el modelo 3D.") |
|
|
|
except HTTPException as e: |
|
logger.error(f"HTTPException: {e.detail}") |
|
raise e |
|
except Exception as e: |
|
logger.error(f"Error inesperado: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error: {e}") |
|
|
|
def download_all_models_in_background(): |
|
models_url = "https://huggingface.co/api/models" |
|
try: |
|
logger.info("Obteniendo lista de modelos desde Hugging Face...") |
|
response = requests.get(models_url) |
|
if response.status_code != 200: |
|
logger.error("Error al obtener la lista de modelos de Hugging Face.") |
|
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.") |
|
|
|
models = response.json() |
|
for model in models: |
|
model_name = model["id"] |
|
logger.info(f"Descargando el modelo '{model_name}' desde Hugging Face...") |
|
download_model_from_huggingface(model_name) |
|
except Exception as e: |
|
logger.error(f"Error al descargar modelos en segundo plano: {e}") |
|
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.") |
|
|
|
def run_in_background(): |
|
logger.info("Iniciando la descarga de modelos en segundo plano...") |
|
threading.Thread(target=download_all_models_in_background, daemon=True).start() |
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
run_in_background() |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|