|
import os |
|
import re |
|
import json |
|
import requests |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from google.cloud import storage |
|
from google.auth import exceptions |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from io import BytesIO |
|
from dotenv import load_dotenv |
|
import uvicorn |
|
|
|
load_dotenv() |
|
|
|
API_KEY = os.getenv("API_KEY") |
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") |
|
HF_API_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
def validate_bucket_name(bucket_name): |
|
if not re.match(r"^[a-z0-9][a-z0-9\-]*[a-z0-9]$", bucket_name): |
|
raise ValueError(f"Invalid bucket name '{bucket_name}'. Must start and end with a letter or number.") |
|
return bucket_name |
|
|
|
def validate_huggingface_repo_name(repo_name): |
|
if not re.match(r"^[a-zA-Z0-9_.-]+$", repo_name): |
|
raise ValueError(f"Invalid repository name '{repo_name}'. Must use alphanumeric characters, '-', '_', or '.'.") |
|
if repo_name.startswith(('-', '.')) or repo_name.endswith(('-', '.')) or '..' in repo_name: |
|
raise ValueError(f"Invalid repository name '{repo_name}'. Cannot start or end with '-' or '.', or contain '..'.") |
|
if len(repo_name) > 96: |
|
raise ValueError(f"Repository name '{repo_name}' exceeds max length of 96 characters.") |
|
return repo_name |
|
|
|
try: |
|
GCS_BUCKET_NAME = validate_bucket_name(GCS_BUCKET_NAME) |
|
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) |
|
storage_client = storage.Client.from_service_account_info(credentials_info) |
|
bucket = storage_client.bucket(GCS_BUCKET_NAME) |
|
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e: |
|
raise RuntimeError(f"Error al cargar credenciales o bucket: {e}") |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str |
|
pipeline_task: str |
|
input_text: str |
|
|
|
class GCSHandler: |
|
def __init__(self, bucket_name): |
|
self.bucket = storage_client.bucket(bucket_name) |
|
|
|
def file_exists(self, blob_name): |
|
return self.bucket.blob(blob_name).exists() |
|
|
|
def upload_file(self, blob_name, file_stream): |
|
blob = self.bucket.blob(blob_name) |
|
blob.upload_from_file(file_stream) |
|
|
|
def download_file(self, blob_name): |
|
blob = self.bucket.blob(blob_name) |
|
if not blob.exists(): |
|
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.") |
|
return BytesIO(blob.download_as_bytes()) |
|
|
|
def download_model_from_huggingface(model_name): |
|
model_name = validate_huggingface_repo_name(model_name) |
|
file_patterns = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
for i in range(1, 100): |
|
file_patterns.extend([f"pytorch_model-{i:05}-of-00001", f"model-{i:05}"]) |
|
for filename in file_patterns: |
|
url = f"https://huggingface.co/{model_name}/resolve/main/{filename}" |
|
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} |
|
try: |
|
response = requests.get(url, headers=headers, stream=True) |
|
if response.status_code == 200: |
|
blob_name = f"{model_name}/{filename}" |
|
bucket.blob(blob_name).upload_from_file(BytesIO(response.content)) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error downloading {filename} from Hugging Face: {e}") |
|
|
|
@app.post("/predict/") |
|
async def predict(request: DownloadModelRequest): |
|
try: |
|
gcs_handler = GCSHandler(GCS_BUCKET_NAME) |
|
model_prefix = request.model_name |
|
model_files = [ |
|
"pytorch_model.bin", |
|
"config.json", |
|
"tokenizer.json", |
|
"model.safetensors", |
|
] |
|
for i in range(1, 100): |
|
model_files.extend([f"pytorch_model-{i:05}-of-00001", f"model-{i:05}"]) |
|
if not any(gcs_handler.file_exists(f"{model_prefix}/{file}") for file in model_files): |
|
download_model_from_huggingface(model_prefix) |
|
model_files_streams = {file: gcs_handler.download_file(f"{model_prefix}/{file}") for file in model_files if gcs_handler.file_exists(f"{model_prefix}/{file}")} |
|
config_stream = model_files_streams.get("config.json") |
|
tokenizer_stream = model_files_streams.get("tokenizer.json") |
|
if not config_stream or not tokenizer_stream: |
|
raise HTTPException(status_code=500, detail="Required model files missing.") |
|
model = AutoModelForCausalLM.from_pretrained(config_stream) |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) |
|
pipeline_ = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer) |
|
result = pipeline_(request.input_text) |
|
return {"response": result} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error: {e}") |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|