|
import os |
|
import re |
|
import requests |
|
import json |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from google.auth import exceptions |
|
from google.cloud import storage |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from io import BytesIO |
|
from dotenv import load_dotenv |
|
import uvicorn |
|
|
|
load_dotenv() |
|
|
|
API_KEY = os.getenv("API_KEY") |
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") |
|
HF_API_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
def validate_bucket_name(bucket_name): |
|
if not isinstance(bucket_name, str): |
|
raise ValueError("Bucket name must be a string.") |
|
if len(bucket_name) < 3 or len(bucket_name) > 63: |
|
raise ValueError("Bucket name must be between 3 and 63 characters long.") |
|
if not re.match(r"^[a-z0-9][a-z0-9\-\.]*[a-z0-9]$", bucket_name): |
|
raise ValueError( |
|
f"Invalid bucket name '{bucket_name}'. Bucket names must:" |
|
" - Use only lowercase letters, numbers, hyphens (-), and periods (.)" |
|
" - Start and end with a letter or number." |
|
) |
|
if "--" in bucket_name or ".." in bucket_name or ".-" in bucket_name or "-." in bucket_name: |
|
raise ValueError( |
|
f"Invalid bucket name '{bucket_name}'. Bucket names cannot contain consecutive periods, hyphens, or use '.-' or '-.'" |
|
) |
|
return bucket_name |
|
|
|
try: |
|
GCS_BUCKET_NAME = validate_bucket_name(GCS_BUCKET_NAME) |
|
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) |
|
storage_client = storage.Client.from_service_account_info(credentials_info) |
|
bucket = storage_client.bucket(GCS_BUCKET_NAME) |
|
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e: |
|
print(f"Error al cargar credenciales o bucket: {e}") |
|
exit(1) |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str |
|
pipeline_task: str |
|
input_text: str |
|
|
|
class GCSStreamHandler: |
|
def __init__(self, bucket_name): |
|
self.bucket = storage_client.bucket(bucket_name) |
|
|
|
def file_exists(self, blob_name): |
|
return self.bucket.blob(blob_name).exists() |
|
|
|
def stream_file_from_gcs(self, blob_name): |
|
blob = self.bucket.blob(blob_name) |
|
if not blob.exists(): |
|
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found in GCS.") |
|
return blob.download_as_bytes() |
|
|
|
def upload_file_to_gcs(self, blob_name, data_stream): |
|
blob = self.bucket.blob(blob_name) |
|
blob.upload_from_file(data_stream) |
|
|
|
def ensure_bucket_structure(self, model_prefix): |
|
required_files = ["config.json", "tokenizer.json"] |
|
for filename in required_files: |
|
blob_name = f"{model_prefix}/{filename}" |
|
if not self.file_exists(blob_name): |
|
self.bucket.blob(blob_name).upload_from_string("{}", content_type="application/json") |
|
|
|
def stream_model_files(self, model_prefix, model_patterns): |
|
model_files = {} |
|
for pattern in model_patterns: |
|
blobs = list(self.bucket.list_blobs(prefix=f"{model_prefix}/")) |
|
for blob in blobs: |
|
if re.match(pattern, blob.name.split('/')[-1]): |
|
model_files[blob.name.split('/')[-1]] = BytesIO(blob.download_as_bytes()) |
|
return model_files |
|
|
|
def download_model_from_huggingface(model_name): |
|
file_patterns = [ |
|
"pytorch_model.bin", |
|
"model.safetensors", |
|
"config.json", |
|
"tokenizer.json", |
|
] |
|
for i in range(1, 100): |
|
file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}") |
|
file_patterns.append(f"model-{i:05}") |
|
for filename in file_patterns: |
|
url = f"https://huggingface.co/{model_name}/resolve/main/{filename}" |
|
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} |
|
try: |
|
response = requests.get(url, headers=headers, stream=True) |
|
if response.status_code == 200: |
|
blob_name = f"{model_name}/{filename}" |
|
blob = bucket.blob(blob_name) |
|
blob.upload_from_file(BytesIO(response.content)) |
|
except Exception as e: |
|
pass |
|
|
|
@app.post("/predict/") |
|
async def predict(request: DownloadModelRequest): |
|
try: |
|
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME) |
|
model_prefix = request.model_name |
|
model_patterns = [ |
|
r"pytorch_model-\d+-of-\d+", |
|
r"model-\d+", |
|
r"pytorch_model.bin", |
|
r"model.safetensors", |
|
] |
|
if not any( |
|
gcs_handler.file_exists(f"{model_prefix}/{pattern}") for pattern in model_patterns |
|
): |
|
download_model_from_huggingface(model_prefix) |
|
model_files = gcs_handler.stream_model_files(model_prefix, model_patterns) |
|
config_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/config.json") |
|
tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/tokenizer.json") |
|
model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream)) |
|
tokenizer = AutoTokenizer.from_pretrained(BytesIO(tokenizer_stream)) |
|
pipeline_task = request.pipeline_task |
|
pipeline_ = pipeline(pipeline_task, model=model, tokenizer=tokenizer) |
|
input_text = request.input_text |
|
result = pipeline_(input_text) |
|
return {"response": result} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error: {e}") |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|