gcs / app.py
Hjgugugjhuhjggg's picture
Update app.py
2280244 verified
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import pipeline, AutoConfig, AutoTokenizer
from transformers.utils import logging
from google.cloud import storage
from google.auth.exceptions import DefaultCredentialsError
import uvicorn
import asyncio
import json
from huggingface_hub import login
from dotenv import load_dotenv
import huggingface_hub
from threading import Thread
from typing import AsyncIterator, List, Dict
from transformers import StoppingCriteria, StoppingCriteriaList
import torch
load_dotenv()
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
HUGGINGFACE_HUB_TOKEN = os.getenv("HF_API_TOKEN")
if HUGGINGFACE_HUB_TOKEN:
login(token=HUGGINGFACE_HUB_TOKEN)
os.system("git config --global credential.helper store")
if HUGGINGFACE_HUB_TOKEN:
huggingface_hub.login(token=HUGGINGFACE_HUB_TOKEN, add_to_git_credential=True)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
try:
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
client = storage.Client.from_service_account_info(credentials_info)
bucket = client.get_bucket(GCS_BUCKET_NAME)
logger.info(f"Connection to Google Cloud Storage successful. Bucket: {GCS_BUCKET_NAME}")
except (DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e:
logger.error(f"Error loading credentials or bucket: {e}")
raise RuntimeError(f"Error loading credentials or bucket: {e}")
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = False
chunk_delay: float = 0.0
max_new_tokens: int = 10
stopping_strings: List[str] = None
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-generation"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class StopOnKeywords(StoppingCriteria):
def __init__(self, stop_words_ids: List[List[int]], tokenizer, encounters: int = 1):
super().__init__()
self.stop_words_ids = stop_words_ids
self.tokenizer = tokenizer
self.encounters = encounters
self.current_encounters = 0
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_ids in self.stop_words_ids:
if torch.all(input_ids[0][-len(stop_ids):] == torch.tensor(stop_ids).to(input_ids.device)):
self.current_encounters += 1
if self.current_encounters >= self.encounters:
return True
return False
class GCSModelLoader:
def __init__(self, bucket):
self.bucket = bucket
def _get_gcs_uri(self, model_name):
return f"{model_name}"
def _blob_exists(self, blob_path):
blob = self.bucket.blob(blob_path)
return blob.exists()
def _create_model_folder(self, model_name):
gcs_model_folder = self._get_gcs_uri(model_name)
if not self._blob_exists(f"{gcs_model_folder}/.touch"):
blob = self.bucket.blob(f"{gcs_model_folder}/.touch")
blob.upload_from_string("")
logger.info(f"Created folder '{gcs_model_folder}' in GCS.")
def check_model_exists_locally(self, model_name):
gcs_model_path = self._get_gcs_uri(model_name)
blobs = self.bucket.list_blobs(prefix=gcs_model_path)
return any(blobs)
def download_model_from_huggingface(self, model_name):
logger.info(f"Downloading model '{model_name}' from Hugging Face.")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
gcs_model_folder = self._get_gcs_uri(model_name)
self._create_model_folder(model_name)
tokenizer.save_pretrained(gcs_model_folder)
config.save_pretrained(gcs_model_folder)
for filename in os.listdir(config.name_or_path):
if filename.endswith((".bin", ".safetensors")):
blob = self.bucket.blob(f"{gcs_model_folder}/{filename}")
blob.upload_from_filename(os.path.join(config.name_or_path, filename))
logger.info(f"Model '{model_name}' downloaded and saved to GCS.")
return True
except Exception as e:
logger.error(f"Error downloading model from Hugging Face: {e}")
return False
model_loader = GCSModelLoader(bucket)
@app.post("/generate")
async def generate(request: GenerateRequest):
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
requested_max_new_tokens = request.max_new_tokens
generation_params = request.model_dump(
exclude_none=True,
exclude={'model_name', 'input_text', 'task_type', 'stream', 'chunk_delay', 'max_new_tokens', 'stopping_strings'}
)
user_defined_stopping_strings = request.stopping_strings
try:
if not model_loader.check_model_exists_locally(model_name):
if not model_loader.download_model_from_huggingface(model_name):
raise HTTPException(status_code=500, detail=f"Failed to load model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
stopping_criteria_list = StoppingCriteriaList()
if user_defined_stopping_strings:
stop_words_ids = [tokenizer.encode(stop_string, add_special_tokens=False) for stop_string in user_defined_stopping_strings]
stopping_criteria_list.append(StopOnKeywords(stop_words_ids, tokenizer)) # Pass tokenizer
if config.eos_token_id is not None:
eos_token_ids = [config.eos_token_id]
if isinstance(config.eos_token_id, int):
eos_token_ids = [[config.eos_token_id]]
elif isinstance(config.eos_token_id, list):
eos_token_ids = [[id] for id in config.eos_token_id]
stop_words_ids_eos = [tokenizer.encode(tokenizer.decode(eos_id), add_special_tokens=False) for eos_id in eos_token_ids]
stopping_criteria_list.append(StopOnKeywords(stop_words_ids_eos, tokenizer)) # Pass tokenizer
elif tokenizer.eos_token is not None:
stop_words_ids_eos = [tokenizer.encode(tokenizer.eos_token, add_special_tokens=False)]
stopping_criteria_list.append(StopOnKeywords(stop_words_ids_eos, tokenizer)) # Pass tokenizer
async def generate_responses() -> AsyncIterator[Dict[str, List[Dict[str, str]]]]:
nonlocal input_text
all_generated_text = ""
stop_reason = None
while True:
text_pipeline = pipeline(
task_type,
model=model_name,
tokenizer=tokenizer,
token=HUGGINGFACE_HUB_TOKEN,
stopping_criteria=stopping_criteria_list,
**generation_params,
max_new_tokens=requested_max_new_tokens
)
def generate_on_thread(pipeline, current_input_text, output_queue):
result = pipeline(current_input_text)
output_queue.put_nowait(result)
output_queue = asyncio.Queue()
thread = Thread(target=generate_on_thread, args=(text_pipeline, input_text, output_queue))
thread.start()
result = await output_queue.get()
thread.join()
newly_generated_text = result[0]['generated_text']
# Decode tokens to check for stopping strings
for criteria in stopping_criteria_list:
if isinstance(criteria, StopOnKeywords):
for stop_ids in criteria.stop_words_ids:
decoded_stop_string = tokenizer.decode(stop_ids)
if decoded_stop_string in newly_generated_text:
stop_reason = f"stopping_string: {decoded_stop_string}"
break
if stop_reason:
break
if stop_reason:
break
all_generated_text += newly_generated_text
yield {"response": [{'generated_text': newly_generated_text}]}
if config.eos_token_id is not None:
eos_tokens = [config.eos_token_id]
if isinstance(config.eos_token_id, int):
eos_tokens = [config.eos_token_id]
elif isinstance(config.eos_token_id, list):
eos_tokens = config.eos_token_id
for eos_token in eos_tokens:
if tokenizer.decode([eos_token]) in newly_generated_text:
stop_reason = "eos_token"
break
if stop_reason:
break
elif tokenizer.eos_token is not None and tokenizer.eos_token in newly_generated_text:
stop_reason = "eos_token"
break
input_text = all_generated_text
async def text_stream():
async for data in generate_responses():
yield f"data: {json.dumps(data)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(text_stream(), media_type="text/event-stream")
except HTTPException as e:
raise e
except Exception as e:
logger.error(f"Internal server error: {e}")
raise HTTPException(status_code=500, detail=f"Internal server error: {e}")
if __name__ == "__main__":
import torch
uvicorn.run(app, host="0.0.0.0", port=7860)