|
import os |
|
from fastapi import FastAPI, HTTPException |
|
from fastapi.responses import StreamingResponse |
|
from pydantic import BaseModel, field_validator |
|
from transformers import pipeline, AutoConfig, AutoTokenizer |
|
from transformers.utils import logging |
|
from google.cloud import storage |
|
from google.auth.exceptions import DefaultCredentialsError |
|
import uvicorn |
|
import asyncio |
|
import json |
|
from huggingface_hub import login |
|
from dotenv import load_dotenv |
|
import huggingface_hub |
|
from threading import Thread |
|
from typing import AsyncIterator, List, Dict |
|
from transformers import StoppingCriteria, StoppingCriteriaList |
|
import torch |
|
|
|
load_dotenv() |
|
|
|
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") |
|
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") |
|
HUGGINGFACE_HUB_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
if HUGGINGFACE_HUB_TOKEN: |
|
login(token=HUGGINGFACE_HUB_TOKEN) |
|
|
|
os.system("git config --global credential.helper store") |
|
if HUGGINGFACE_HUB_TOKEN: |
|
huggingface_hub.login(token=HUGGINGFACE_HUB_TOKEN, add_to_git_credential=True) |
|
|
|
logging.set_verbosity_info() |
|
logger = logging.get_logger(__name__) |
|
|
|
try: |
|
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) |
|
client = storage.Client.from_service_account_info(credentials_info) |
|
bucket = client.get_bucket(GCS_BUCKET_NAME) |
|
logger.info(f"Connection to Google Cloud Storage successful. Bucket: {GCS_BUCKET_NAME}") |
|
|
|
except (DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e: |
|
logger.error(f"Error loading credentials or bucket: {e}") |
|
raise RuntimeError(f"Error loading credentials or bucket: {e}") |
|
|
|
app = FastAPI() |
|
|
|
class GenerateRequest(BaseModel): |
|
model_name: str |
|
input_text: str |
|
task_type: str |
|
temperature: float = 1.0 |
|
stream: bool = True |
|
top_p: float = 1.0 |
|
top_k: int = 50 |
|
repetition_penalty: float = 1.0 |
|
num_return_sequences: int = 1 |
|
do_sample: bool = False |
|
chunk_delay: float = 0.0 |
|
max_new_tokens: int = 10 |
|
stopping_strings: List[str] = None |
|
|
|
@field_validator("model_name") |
|
def model_name_cannot_be_empty(cls, v): |
|
if not v: |
|
raise ValueError("model_name cannot be empty.") |
|
return v |
|
|
|
@field_validator("task_type") |
|
def task_type_must_be_valid(cls, v): |
|
valid_types = ["text-generation"] |
|
if v not in valid_types: |
|
raise ValueError(f"task_type must be one of: {valid_types}") |
|
return v |
|
|
|
class StopOnKeywords(StoppingCriteria): |
|
def __init__(self, stop_words_ids: List[List[int]], tokenizer, encounters: int = 1): |
|
super().__init__() |
|
self.stop_words_ids = stop_words_ids |
|
self.tokenizer = tokenizer |
|
self.encounters = encounters |
|
self.current_encounters = 0 |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
for stop_ids in self.stop_words_ids: |
|
if torch.all(input_ids[0][-len(stop_ids):] == torch.tensor(stop_ids).to(input_ids.device)): |
|
self.current_encounters += 1 |
|
if self.current_encounters >= self.encounters: |
|
return True |
|
return False |
|
|
|
class GCSModelLoader: |
|
def __init__(self, bucket): |
|
self.bucket = bucket |
|
|
|
def _get_gcs_uri(self, model_name): |
|
return f"{model_name}" |
|
|
|
def _blob_exists(self, blob_path): |
|
blob = self.bucket.blob(blob_path) |
|
return blob.exists() |
|
|
|
def _create_model_folder(self, model_name): |
|
gcs_model_folder = self._get_gcs_uri(model_name) |
|
if not self._blob_exists(f"{gcs_model_folder}/.touch"): |
|
blob = self.bucket.blob(f"{gcs_model_folder}/.touch") |
|
blob.upload_from_string("") |
|
logger.info(f"Created folder '{gcs_model_folder}' in GCS.") |
|
|
|
def check_model_exists_locally(self, model_name): |
|
gcs_model_path = self._get_gcs_uri(model_name) |
|
blobs = self.bucket.list_blobs(prefix=gcs_model_path) |
|
return any(blobs) |
|
|
|
def download_model_from_huggingface(self, model_name): |
|
logger.info(f"Downloading model '{model_name}' from Hugging Face.") |
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN) |
|
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN) |
|
gcs_model_folder = self._get_gcs_uri(model_name) |
|
self._create_model_folder(model_name) |
|
tokenizer.save_pretrained(gcs_model_folder) |
|
config.save_pretrained(gcs_model_folder) |
|
for filename in os.listdir(config.name_or_path): |
|
if filename.endswith((".bin", ".safetensors")): |
|
blob = self.bucket.blob(f"{gcs_model_folder}/{filename}") |
|
blob.upload_from_filename(os.path.join(config.name_or_path, filename)) |
|
logger.info(f"Model '{model_name}' downloaded and saved to GCS.") |
|
return True |
|
except Exception as e: |
|
logger.error(f"Error downloading model from Hugging Face: {e}") |
|
return False |
|
|
|
model_loader = GCSModelLoader(bucket) |
|
|
|
@app.post("/generate") |
|
async def generate(request: GenerateRequest): |
|
model_name = request.model_name |
|
input_text = request.input_text |
|
task_type = request.task_type |
|
requested_max_new_tokens = request.max_new_tokens |
|
generation_params = request.model_dump( |
|
exclude_none=True, |
|
exclude={'model_name', 'input_text', 'task_type', 'stream', 'chunk_delay', 'max_new_tokens', 'stopping_strings'} |
|
) |
|
user_defined_stopping_strings = request.stopping_strings |
|
|
|
try: |
|
if not model_loader.check_model_exists_locally(model_name): |
|
if not model_loader.download_model_from_huggingface(model_name): |
|
raise HTTPException(status_code=500, detail=f"Failed to load model: {model_name}") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN) |
|
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN) |
|
stopping_criteria_list = StoppingCriteriaList() |
|
|
|
if user_defined_stopping_strings: |
|
stop_words_ids = [tokenizer.encode(stop_string, add_special_tokens=False) for stop_string in user_defined_stopping_strings] |
|
stopping_criteria_list.append(StopOnKeywords(stop_words_ids, tokenizer)) |
|
|
|
if config.eos_token_id is not None: |
|
eos_token_ids = [config.eos_token_id] |
|
if isinstance(config.eos_token_id, int): |
|
eos_token_ids = [[config.eos_token_id]] |
|
elif isinstance(config.eos_token_id, list): |
|
eos_token_ids = [[id] for id in config.eos_token_id] |
|
stop_words_ids_eos = [tokenizer.encode(tokenizer.decode(eos_id), add_special_tokens=False) for eos_id in eos_token_ids] |
|
stopping_criteria_list.append(StopOnKeywords(stop_words_ids_eos, tokenizer)) |
|
elif tokenizer.eos_token is not None: |
|
stop_words_ids_eos = [tokenizer.encode(tokenizer.eos_token, add_special_tokens=False)] |
|
stopping_criteria_list.append(StopOnKeywords(stop_words_ids_eos, tokenizer)) |
|
|
|
async def generate_responses() -> AsyncIterator[Dict[str, List[Dict[str, str]]]]: |
|
nonlocal input_text |
|
all_generated_text = "" |
|
stop_reason = None |
|
|
|
while True: |
|
text_pipeline = pipeline( |
|
task_type, |
|
model=model_name, |
|
tokenizer=tokenizer, |
|
token=HUGGINGFACE_HUB_TOKEN, |
|
stopping_criteria=stopping_criteria_list, |
|
**generation_params, |
|
max_new_tokens=requested_max_new_tokens |
|
) |
|
|
|
def generate_on_thread(pipeline, current_input_text, output_queue): |
|
result = pipeline(current_input_text) |
|
output_queue.put_nowait(result) |
|
|
|
output_queue = asyncio.Queue() |
|
thread = Thread(target=generate_on_thread, args=(text_pipeline, input_text, output_queue)) |
|
thread.start() |
|
result = await output_queue.get() |
|
thread.join() |
|
|
|
newly_generated_text = result[0]['generated_text'] |
|
|
|
|
|
for criteria in stopping_criteria_list: |
|
if isinstance(criteria, StopOnKeywords): |
|
for stop_ids in criteria.stop_words_ids: |
|
decoded_stop_string = tokenizer.decode(stop_ids) |
|
if decoded_stop_string in newly_generated_text: |
|
stop_reason = f"stopping_string: {decoded_stop_string}" |
|
break |
|
if stop_reason: |
|
break |
|
|
|
if stop_reason: |
|
break |
|
|
|
all_generated_text += newly_generated_text |
|
yield {"response": [{'generated_text': newly_generated_text}]} |
|
|
|
if config.eos_token_id is not None: |
|
eos_tokens = [config.eos_token_id] |
|
if isinstance(config.eos_token_id, int): |
|
eos_tokens = [config.eos_token_id] |
|
elif isinstance(config.eos_token_id, list): |
|
eos_tokens = config.eos_token_id |
|
for eos_token in eos_tokens: |
|
if tokenizer.decode([eos_token]) in newly_generated_text: |
|
stop_reason = "eos_token" |
|
break |
|
if stop_reason: |
|
break |
|
elif tokenizer.eos_token is not None and tokenizer.eos_token in newly_generated_text: |
|
stop_reason = "eos_token" |
|
break |
|
|
|
input_text = all_generated_text |
|
|
|
async def text_stream(): |
|
async for data in generate_responses(): |
|
yield f"data: {json.dumps(data)}\n\n" |
|
yield "data: [DONE]\n\n" |
|
|
|
return StreamingResponse(text_stream(), media_type="text/event-stream") |
|
|
|
except HTTPException as e: |
|
raise e |
|
except Exception as e: |
|
logger.error(f"Internal server error: {e}") |
|
raise HTTPException(status_code=500, detail=f"Internal server error: {e}") |
|
|
|
if __name__ == "__main__": |
|
import torch |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |