Update app.py
Browse files
app.py
CHANGED
@@ -56,7 +56,6 @@ def download_model_from_huggingface(model_name):
|
|
56 |
try:
|
57 |
response = requests.get(url, headers=headers)
|
58 |
if response.status_code == 200:
|
59 |
-
# Enlace a los archivos del modelo
|
60 |
model_files = [
|
61 |
"pytorch_model.bin",
|
62 |
"config.json",
|
@@ -85,17 +84,13 @@ async def predict(request: DownloadModelRequest):
|
|
85 |
"model.safetensors",
|
86 |
]
|
87 |
|
88 |
-
# Verificar si los archivos del modelo est谩n en GCS
|
89 |
model_files_exist = all(gcs_handler.file_exists(f"{model_prefix}/{file}") for file in model_files)
|
90 |
|
91 |
if not model_files_exist:
|
92 |
-
# Descargar el modelo si no existe
|
93 |
download_model_from_huggingface(model_prefix)
|
94 |
|
95 |
-
# Descargar los archivos necesarios
|
96 |
model_files_streams = {file: gcs_handler.download_file(f"{model_prefix}/{file}") for file in model_files if gcs_handler.file_exists(f"{model_prefix}/{file}")}
|
97 |
|
98 |
-
# Asegurar que los archivos esenciales est茅n presentes
|
99 |
config_stream = model_files_streams.get("config.json")
|
100 |
tokenizer_stream = model_files_streams.get("tokenizer.json")
|
101 |
model_stream = model_files_streams.get("pytorch_model.bin")
|
@@ -103,7 +98,6 @@ async def predict(request: DownloadModelRequest):
|
|
103 |
if not config_stream or not tokenizer_stream or not model_stream:
|
104 |
raise HTTPException(status_code=500, detail="Required model files missing.")
|
105 |
|
106 |
-
# Guardar los archivos en directorios temporales
|
107 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
108 |
config_path = os.path.join(tmp_dir, "config.json")
|
109 |
tokenizer_path = os.path.join(tmp_dir, "tokenizer.json")
|
@@ -116,14 +110,11 @@ async def predict(request: DownloadModelRequest):
|
|
116 |
with open(model_path, 'wb') as f:
|
117 |
f.write(model_stream.read())
|
118 |
|
119 |
-
|
120 |
-
model = AutoModelForCausalLM.from_pretrained(tmp_dir)
|
121 |
tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
|
122 |
|
123 |
-
# Crear un pipeline para la tarea deseada
|
124 |
pipeline_ = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer)
|
125 |
|
126 |
-
# Realizar la predicci贸n
|
127 |
result = pipeline_(request.input_text)
|
128 |
|
129 |
return {"response": result}
|
|
|
56 |
try:
|
57 |
response = requests.get(url, headers=headers)
|
58 |
if response.status_code == 200:
|
|
|
59 |
model_files = [
|
60 |
"pytorch_model.bin",
|
61 |
"config.json",
|
|
|
84 |
"model.safetensors",
|
85 |
]
|
86 |
|
|
|
87 |
model_files_exist = all(gcs_handler.file_exists(f"{model_prefix}/{file}") for file in model_files)
|
88 |
|
89 |
if not model_files_exist:
|
|
|
90 |
download_model_from_huggingface(model_prefix)
|
91 |
|
|
|
92 |
model_files_streams = {file: gcs_handler.download_file(f"{model_prefix}/{file}") for file in model_files if gcs_handler.file_exists(f"{model_prefix}/{file}")}
|
93 |
|
|
|
94 |
config_stream = model_files_streams.get("config.json")
|
95 |
tokenizer_stream = model_files_streams.get("tokenizer.json")
|
96 |
model_stream = model_files_streams.get("pytorch_model.bin")
|
|
|
98 |
if not config_stream or not tokenizer_stream or not model_stream:
|
99 |
raise HTTPException(status_code=500, detail="Required model files missing.")
|
100 |
|
|
|
101 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
102 |
config_path = os.path.join(tmp_dir, "config.json")
|
103 |
tokenizer_path = os.path.join(tmp_dir, "tokenizer.json")
|
|
|
110 |
with open(model_path, 'wb') as f:
|
111 |
f.write(model_stream.read())
|
112 |
|
113 |
+
model = AutoModelForCausalLM.from_pretrained(tmp_dir, from_tf=False)
|
|
|
114 |
tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
|
115 |
|
|
|
116 |
pipeline_ = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer)
|
117 |
|
|
|
118 |
result = pipeline_(request.input_text)
|
119 |
|
120 |
return {"response": result}
|