Hjgugugjhuhjggg
commited on
Commit
•
9ef439e
1
Parent(s):
2058dee
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,6 @@ from transformers import pipeline
|
|
12 |
from dotenv import load_dotenv
|
13 |
import uvicorn
|
14 |
|
15 |
-
# Configuración de carga de variables de entorno
|
16 |
load_dotenv()
|
17 |
|
18 |
API_KEY = os.getenv("API_KEY")
|
@@ -20,11 +19,9 @@ GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
|
|
20 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
21 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
22 |
|
23 |
-
# Configuración del logger
|
24 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
-
# Inicializar el cliente de Google Cloud Storage
|
28 |
try:
|
29 |
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
|
30 |
storage_client = storage.Client.from_service_account_info(credentials_info)
|
@@ -65,7 +62,7 @@ class GCSHandler:
|
|
65 |
logger.error(f"Archivo '{blob_name}' no encontrado en GCS.")
|
66 |
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.")
|
67 |
logger.debug(f"Descargando archivo '{blob_name}' de GCS.")
|
68 |
-
return blob.open("rb")
|
69 |
|
70 |
def generate_signed_url(self, blob_name, expiration=3600):
|
71 |
blob = self.bucket.blob(blob_name)
|
@@ -76,7 +73,6 @@ class GCSHandler:
|
|
76 |
def download_model_from_huggingface(model_name):
|
77 |
url = f"https://huggingface.co/{model_name}/tree/main"
|
78 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
79 |
-
|
80 |
try:
|
81 |
logger.info(f"Descargando el modelo '{model_name}' desde Hugging Face...")
|
82 |
response = requests.get(url, headers=headers)
|
@@ -90,7 +86,6 @@ def download_model_from_huggingface(model_name):
|
|
90 |
for file_name in model_files:
|
91 |
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}"
|
92 |
file_content = requests.get(file_url).content
|
93 |
-
# Subir el archivo directamente desde el contenido
|
94 |
blob_name = f"{model_name}/{file_name}"
|
95 |
blob = bucket.blob(blob_name)
|
96 |
blob.upload_from_string(file_content)
|
@@ -131,14 +126,12 @@ async def predict(request: DownloadModelRequest):
|
|
131 |
logger.error(f"Faltan archivos necesarios para el modelo '{model_prefix}'.")
|
132 |
raise HTTPException(status_code=500, detail="Required model files missing.")
|
133 |
|
134 |
-
# Tareas basadas en texto
|
135 |
if request.pipeline_task in ["text-generation", "translation", "summarization"]:
|
136 |
pipe = pipeline(request.pipeline_task, model=model_stream, tokenizer=tokenizer_stream)
|
137 |
result = pipe(request.input_text)
|
138 |
logger.info(f"Resultado generado para la tarea '{request.pipeline_task}': {result[0]}")
|
139 |
return {"response": result[0]}
|
140 |
|
141 |
-
# Tareas de imagen
|
142 |
elif request.pipeline_task == "image-generation":
|
143 |
try:
|
144 |
pipe = pipeline("image-generation", model=model_stream)
|
@@ -148,7 +141,6 @@ async def predict(request: DownloadModelRequest):
|
|
148 |
image_path = f"images/{image_filename}"
|
149 |
image.save(image_path)
|
150 |
|
151 |
-
# Subir la imagen generada a GCS
|
152 |
gcs_handler.upload_file(image_path, open(image_path, "rb"))
|
153 |
image_url = gcs_handler.generate_signed_url(image_path)
|
154 |
logger.info(f"Imagen generada y subida correctamente con URL: {image_url}")
|
@@ -189,7 +181,6 @@ async def predict(request: DownloadModelRequest):
|
|
189 |
logger.error(f"Error transformando la imagen: {e}")
|
190 |
raise HTTPException(status_code=400, detail="Error transformando la imagen.")
|
191 |
|
192 |
-
# Tarea de generación de modelo 3D (simulada)
|
193 |
elif request.pipeline_task == "text-to-3d":
|
194 |
try:
|
195 |
model_3d_filename = f"{uuid.uuid4().hex}.obj"
|
@@ -199,46 +190,16 @@ async def predict(request: DownloadModelRequest):
|
|
199 |
|
200 |
gcs_handler.upload_file(f"3d-models/{model_3d_filename}", open(model_3d_path, "rb"))
|
201 |
model_3d_url = gcs_handler.generate_signed_url(f"3d-models/{model_3d_filename}")
|
202 |
-
logger.info(f"Modelo 3D generado y subido con URL: {model_3d_url}")
|
203 |
return {"response": {"model_3d_url": model_3d_url}}
|
|
|
204 |
except Exception as e:
|
205 |
logger.error(f"Error generando el modelo 3D: {e}")
|
206 |
raise HTTPException(status_code=400, detail="Error generando el modelo 3D.")
|
207 |
-
|
208 |
-
except HTTPException as e:
|
209 |
-
logger.error(f"HTTPException: {e.detail}")
|
210 |
-
raise e
|
211 |
-
except Exception as e:
|
212 |
-
logger.error(f"Error inesperado: {e}")
|
213 |
-
raise HTTPException(status_code=500, detail=f"Error: {e}")
|
214 |
|
215 |
-
# Función para ejecutar en segundo plano la descarga de modelos
|
216 |
-
def download_all_models_in_background():
|
217 |
-
models_url = "https://huggingface.co/api/models"
|
218 |
-
try:
|
219 |
-
logger.info("Obteniendo lista de modelos desde Hugging Face...")
|
220 |
-
response = requests.get(models_url)
|
221 |
-
if response.status_code != 200:
|
222 |
-
logger.error("Error al obtener la lista de modelos de Hugging Face.")
|
223 |
-
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
|
224 |
-
|
225 |
-
models = response.json()
|
226 |
-
for model in models:
|
227 |
-
model_name = model["id"]
|
228 |
-
logger.info(f"Descargando el modelo '{model_name}' desde Hugging Face...")
|
229 |
-
download_model_from_huggingface(model_name)
|
230 |
except Exception as e:
|
231 |
-
logger.error(f"Error
|
232 |
-
raise HTTPException(status_code=500, detail="Error
|
233 |
-
|
234 |
-
# Iniciar la descarga de modelos en segundo plano
|
235 |
-
def run_in_background():
|
236 |
-
logger.info("Iniciando la descarga de modelos en segundo plano...")
|
237 |
-
threading.Thread(target=download_all_models_in_background, daemon=True).start()
|
238 |
-
|
239 |
-
@app.on_event("startup")
|
240 |
-
async def startup_event():
|
241 |
-
run_in_background()
|
242 |
|
243 |
if __name__ == "__main__":
|
244 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
12 |
from dotenv import load_dotenv
|
13 |
import uvicorn
|
14 |
|
|
|
15 |
load_dotenv()
|
16 |
|
17 |
API_KEY = os.getenv("API_KEY")
|
|
|
19 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
20 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
21 |
|
|
|
22 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
|
|
25 |
try:
|
26 |
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
|
27 |
storage_client = storage.Client.from_service_account_info(credentials_info)
|
|
|
62 |
logger.error(f"Archivo '{blob_name}' no encontrado en GCS.")
|
63 |
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.")
|
64 |
logger.debug(f"Descargando archivo '{blob_name}' de GCS.")
|
65 |
+
return blob.open("rb")
|
66 |
|
67 |
def generate_signed_url(self, blob_name, expiration=3600):
|
68 |
blob = self.bucket.blob(blob_name)
|
|
|
73 |
def download_model_from_huggingface(model_name):
|
74 |
url = f"https://huggingface.co/{model_name}/tree/main"
|
75 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
|
|
76 |
try:
|
77 |
logger.info(f"Descargando el modelo '{model_name}' desde Hugging Face...")
|
78 |
response = requests.get(url, headers=headers)
|
|
|
86 |
for file_name in model_files:
|
87 |
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}"
|
88 |
file_content = requests.get(file_url).content
|
|
|
89 |
blob_name = f"{model_name}/{file_name}"
|
90 |
blob = bucket.blob(blob_name)
|
91 |
blob.upload_from_string(file_content)
|
|
|
126 |
logger.error(f"Faltan archivos necesarios para el modelo '{model_prefix}'.")
|
127 |
raise HTTPException(status_code=500, detail="Required model files missing.")
|
128 |
|
|
|
129 |
if request.pipeline_task in ["text-generation", "translation", "summarization"]:
|
130 |
pipe = pipeline(request.pipeline_task, model=model_stream, tokenizer=tokenizer_stream)
|
131 |
result = pipe(request.input_text)
|
132 |
logger.info(f"Resultado generado para la tarea '{request.pipeline_task}': {result[0]}")
|
133 |
return {"response": result[0]}
|
134 |
|
|
|
135 |
elif request.pipeline_task == "image-generation":
|
136 |
try:
|
137 |
pipe = pipeline("image-generation", model=model_stream)
|
|
|
141 |
image_path = f"images/{image_filename}"
|
142 |
image.save(image_path)
|
143 |
|
|
|
144 |
gcs_handler.upload_file(image_path, open(image_path, "rb"))
|
145 |
image_url = gcs_handler.generate_signed_url(image_path)
|
146 |
logger.info(f"Imagen generada y subida correctamente con URL: {image_url}")
|
|
|
181 |
logger.error(f"Error transformando la imagen: {e}")
|
182 |
raise HTTPException(status_code=400, detail="Error transformando la imagen.")
|
183 |
|
|
|
184 |
elif request.pipeline_task == "text-to-3d":
|
185 |
try:
|
186 |
model_3d_filename = f"{uuid.uuid4().hex}.obj"
|
|
|
190 |
|
191 |
gcs_handler.upload_file(f"3d-models/{model_3d_filename}", open(model_3d_path, "rb"))
|
192 |
model_3d_url = gcs_handler.generate_signed_url(f"3d-models/{model_3d_filename}")
|
193 |
+
logger.info(f"Modelo 3D generado y subido correctamente con URL: {model_3d_url}")
|
194 |
return {"response": {"model_3d_url": model_3d_url}}
|
195 |
+
|
196 |
except Exception as e:
|
197 |
logger.error(f"Error generando el modelo 3D: {e}")
|
198 |
raise HTTPException(status_code=400, detail="Error generando el modelo 3D.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
except Exception as e:
|
201 |
+
logger.error(f"Error en la predicción: {e}")
|
202 |
+
raise HTTPException(status_code=500, detail=f"Error en la predicción: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|