Hjgugugjhuhjggg
commited on
Commit
•
abeeac6
1
Parent(s):
e909ba4
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from google.cloud import storage
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from pydantic import BaseModel
|
8 |
from fastapi import FastAPI, HTTPException
|
9 |
-
from io import BytesIO
|
10 |
import requests
|
11 |
import uvicorn
|
12 |
from dotenv import load_dotenv
|
@@ -21,14 +20,9 @@ HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
|
21 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
22 |
logger = logging.getLogger(__name__)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
bucket = storage_client.bucket(GCS_BUCKET_NAME)
|
28 |
-
logger.info(f"Conexión con Google Cloud Storage exitosa. Bucket: {GCS_BUCKET_NAME}")
|
29 |
-
except Exception as e:
|
30 |
-
logger.error(f"Error al cargar las credenciales o bucket: {e}")
|
31 |
-
raise RuntimeError(f"Error al cargar las credenciales o bucket: {e}")
|
32 |
|
33 |
app = FastAPI()
|
34 |
|
@@ -46,23 +40,16 @@ class GCSHandler:
|
|
46 |
|
47 |
def create_folder_if_not_exists(self, folder_name):
|
48 |
if not self.file_exists(folder_name):
|
49 |
-
logger.debug(f"Creando carpeta {folder_name} en GCS.")
|
50 |
self.bucket.blob(folder_name + "/").upload_from_string("")
|
51 |
|
52 |
def upload_file(self, blob_name, file_stream):
|
53 |
self.create_folder_if_not_exists(os.path.dirname(blob_name))
|
54 |
blob = self.bucket.blob(blob_name)
|
55 |
-
|
56 |
-
blob.upload_from_file(file_stream)
|
57 |
-
logger.info(f"Archivo '{blob_name}' subido exitosamente a GCS.")
|
58 |
-
except Exception as e:
|
59 |
-
logger.error(f"Error subiendo el archivo '{blob_name}' a GCS: {e}")
|
60 |
-
raise HTTPException(status_code=500, detail=f"Error subiendo archivo '{blob_name}' a GCS")
|
61 |
|
62 |
def download_file(self, blob_name):
|
63 |
blob = self.bucket.blob(blob_name)
|
64 |
if not blob.exists():
|
65 |
-
logger.error(f"Archivo '{blob_name}' no encontrado en GCS.")
|
66 |
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.")
|
67 |
return blob.open("rb")
|
68 |
|
@@ -73,29 +60,21 @@ class GCSHandler:
|
|
73 |
def download_model_from_huggingface(model_name):
|
74 |
url = f"https://huggingface.co/{model_name}/tree/main"
|
75 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
bucket.blob(blob_name).upload_from_string(file_content)
|
92 |
-
logger.info(f"Archivo '{file_name}' subido exitosamente al bucket GCS.")
|
93 |
-
else:
|
94 |
-
logger.error(f"Error al acceder al árbol de archivos de Hugging Face para '{model_name}'.")
|
95 |
-
raise HTTPException(status_code=404, detail="Error al acceder al árbol de archivos de Hugging Face.")
|
96 |
-
except Exception as e:
|
97 |
-
logger.error(f"Error descargando archivos de Hugging Face: {e}")
|
98 |
-
raise HTTPException(status_code=500, detail=f"Error descargando archivos de Hugging Face: {e}")
|
99 |
|
100 |
def download_and_verify_model(model_name):
|
101 |
model_files = [
|
@@ -105,8 +84,7 @@ def download_and_verify_model(model_name):
|
|
105 |
"model.safetensors",
|
106 |
]
|
107 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
108 |
-
|
109 |
-
if not model_files_exist:
|
110 |
download_model_from_huggingface(model_name)
|
111 |
|
112 |
def load_model_from_gcs(model_name):
|
@@ -117,103 +95,58 @@ def load_model_from_gcs(model_name):
|
|
117 |
"model.safetensors",
|
118 |
]
|
119 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
120 |
-
model_files_streams = {
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if gcs_handler.file_exists(file_path):
|
125 |
-
model_files_streams[file] = gcs_handler.download_file(file_path)
|
126 |
-
else:
|
127 |
-
logger.error(f"Archivo '{file}' no encontrado en GCS.")
|
128 |
-
raise HTTPException(status_code=500, detail=f"Archivo '{file}' no encontrado.")
|
129 |
-
|
130 |
model_stream = model_files_streams.get("pytorch_model.bin") or model_files_streams.get("model.safetensors")
|
131 |
tokenizer_stream = model_files_streams.get("tokenizer.json")
|
132 |
config_stream = model_files_streams.get("config.json")
|
133 |
-
|
134 |
model = AutoModelForCausalLM.from_pretrained(model_stream, config=config_stream)
|
135 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream)
|
136 |
-
|
137 |
return model, tokenizer
|
138 |
|
139 |
def load_model(model_name):
|
140 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
141 |
try:
|
142 |
-
|
143 |
-
logger.info(f"Modelo '{model_name}' cargado exitosamente desde GCS.")
|
144 |
-
return model, tokenizer
|
145 |
except HTTPException:
|
146 |
-
logger.warning(f"Modelo '{model_name}' no encontrado en GCS. Intentando como model_id...")
|
147 |
-
|
148 |
-
try:
|
149 |
download_and_verify_model(model_name)
|
150 |
-
|
151 |
-
logger.info(f"Modelo '{model_name}' cargado exitosamente desde Hugging Face.")
|
152 |
-
return model, tokenizer
|
153 |
-
except Exception as e:
|
154 |
-
logger.error(f"Error al intentar cargar el modelo '{model_name}': {e}")
|
155 |
-
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo '{model_name}': {e}")
|
156 |
|
157 |
@app.on_event("startup")
|
158 |
async def startup():
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
threads = []
|
173 |
-
for model_name in model_names:
|
174 |
-
thread = threading.Thread(target=download_model_thread, args=(model_name,))
|
175 |
-
thread.start()
|
176 |
-
threads.append(thread)
|
177 |
-
|
178 |
-
for thread in threads:
|
179 |
-
thread.join()
|
180 |
-
|
181 |
-
logger.info("Todos los modelos se descargaron correctamente o ya estaban presentes.")
|
182 |
-
except Exception as e:
|
183 |
-
logger.error(f"Error durante la descarga de modelos al iniciar: {e}")
|
184 |
-
raise HTTPException(status_code=500, detail=f"Error durante la descarga de modelos: {e}")
|
185 |
|
186 |
@app.post("/predict/")
|
187 |
async def predict(request: DownloadModelRequest):
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
result = pipe(input_text)
|
196 |
-
|
197 |
-
return {"result": result}
|
198 |
-
except Exception as e:
|
199 |
-
logger.error(f"Error procesando la solicitud: {e}")
|
200 |
-
raise HTTPException(status_code=500, detail=str(e))
|
201 |
|
202 |
def download_all_models_in_background():
|
203 |
models_url = "https://huggingface.co/api/models"
|
204 |
-
|
205 |
-
|
206 |
-
if response.status_code != 200:
|
207 |
-
logger.error("Error al obtener la lista de modelos de Hugging Face.")
|
208 |
-
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
|
209 |
-
|
210 |
models = response.json()
|
211 |
for model in models:
|
212 |
-
|
213 |
-
download_model_from_huggingface(model_name)
|
214 |
-
except Exception as e:
|
215 |
-
logger.error(f"Error al descargar modelos en segundo plano: {e}")
|
216 |
-
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
|
217 |
|
218 |
def run_in_background():
|
219 |
threading.Thread(target=download_all_models_in_background, daemon=True).start()
|
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from pydantic import BaseModel
|
8 |
from fastapi import FastAPI, HTTPException
|
|
|
9 |
import requests
|
10 |
import uvicorn
|
11 |
from dotenv import load_dotenv
|
|
|
20 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
+
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
|
24 |
+
storage_client = storage.Client.from_service_account_info(credentials_info)
|
25 |
+
bucket = storage_client.bucket(GCS_BUCKET_NAME)
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
app = FastAPI()
|
28 |
|
|
|
40 |
|
41 |
def create_folder_if_not_exists(self, folder_name):
|
42 |
if not self.file_exists(folder_name):
|
|
|
43 |
self.bucket.blob(folder_name + "/").upload_from_string("")
|
44 |
|
45 |
def upload_file(self, blob_name, file_stream):
|
46 |
self.create_folder_if_not_exists(os.path.dirname(blob_name))
|
47 |
blob = self.bucket.blob(blob_name)
|
48 |
+
blob.upload_from_file(file_stream)
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def download_file(self, blob_name):
|
51 |
blob = self.bucket.blob(blob_name)
|
52 |
if not blob.exists():
|
|
|
53 |
raise HTTPException(status_code=404, detail=f"File '{blob_name}' not found.")
|
54 |
return blob.open("rb")
|
55 |
|
|
|
60 |
def download_model_from_huggingface(model_name):
|
61 |
url = f"https://huggingface.co/{model_name}/tree/main"
|
62 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
63 |
+
response = requests.get(url, headers=headers)
|
64 |
+
if response.status_code == 200:
|
65 |
+
model_files = [
|
66 |
+
"pytorch_model.bin",
|
67 |
+
"config.json",
|
68 |
+
"tokenizer.json",
|
69 |
+
"model.safetensors",
|
70 |
+
]
|
71 |
+
for file_name in model_files:
|
72 |
+
file_url = f"https://huggingface.co/{model_name}/resolve/main/{file_name}"
|
73 |
+
file_content = requests.get(file_url).content
|
74 |
+
blob_name = f"models/{model_name}/{file_name}"
|
75 |
+
bucket.blob(blob_name).upload_from_string(file_content)
|
76 |
+
else:
|
77 |
+
raise HTTPException(status_code=404, detail="Error accessing Hugging Face model files.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def download_and_verify_model(model_name):
|
80 |
model_files = [
|
|
|
84 |
"model.safetensors",
|
85 |
]
|
86 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
87 |
+
if not all(gcs_handler.file_exists(f"models/{model_name}/{file}") for file in model_files):
|
|
|
88 |
download_model_from_huggingface(model_name)
|
89 |
|
90 |
def load_model_from_gcs(model_name):
|
|
|
95 |
"model.safetensors",
|
96 |
]
|
97 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
98 |
+
model_files_streams = {
|
99 |
+
file: gcs_handler.download_file(f"models/{model_name}/{file}")
|
100 |
+
for file in model_files if gcs_handler.file_exists(f"models/{model_name}/{file}")
|
101 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
model_stream = model_files_streams.get("pytorch_model.bin") or model_files_streams.get("model.safetensors")
|
103 |
tokenizer_stream = model_files_streams.get("tokenizer.json")
|
104 |
config_stream = model_files_streams.get("config.json")
|
|
|
105 |
model = AutoModelForCausalLM.from_pretrained(model_stream, config=config_stream)
|
106 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream)
|
|
|
107 |
return model, tokenizer
|
108 |
|
109 |
def load_model(model_name):
|
110 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
111 |
try:
|
112 |
+
return load_model_from_gcs(model_name)
|
|
|
|
|
113 |
except HTTPException:
|
|
|
|
|
|
|
114 |
download_and_verify_model(model_name)
|
115 |
+
return load_model_from_gcs(model_name)
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
@app.on_event("startup")
|
118 |
async def startup():
|
119 |
+
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
120 |
+
blobs = list(bucket.list_blobs(prefix="models/"))
|
121 |
+
model_names = set(blob.name.split("/")[1] for blob in blobs)
|
122 |
+
def download_model_thread(model_name):
|
123 |
+
try:
|
124 |
+
download_and_verify_model(model_name)
|
125 |
+
except Exception as e:
|
126 |
+
logger.error(f"Error downloading model '{model_name}': {e}")
|
127 |
+
threads = [threading.Thread(target=download_model_thread, args=(model_name,)) for model_name in model_names]
|
128 |
+
for thread in threads:
|
129 |
+
thread.start()
|
130 |
+
for thread in threads:
|
131 |
+
thread.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
@app.post("/predict/")
|
134 |
async def predict(request: DownloadModelRequest):
|
135 |
+
model_name = request.model_name
|
136 |
+
pipeline_task = request.pipeline_task
|
137 |
+
input_text = request.input_text
|
138 |
+
model, tokenizer = load_model(model_name)
|
139 |
+
pipe = pipeline(pipeline_task, model=model, tokenizer=tokenizer)
|
140 |
+
result = pipe(input_text)
|
141 |
+
return {"result": result}
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
def download_all_models_in_background():
|
144 |
models_url = "https://huggingface.co/api/models"
|
145 |
+
response = requests.get(models_url)
|
146 |
+
if response.status_code == 200:
|
|
|
|
|
|
|
|
|
147 |
models = response.json()
|
148 |
for model in models:
|
149 |
+
download_model_from_huggingface(model["id"])
|
|
|
|
|
|
|
|
|
150 |
|
151 |
def run_in_background():
|
152 |
threading.Thread(target=download_all_models_in_background, daemon=True).start()
|